↓ Skip to main content

Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins

Overview of attention for article published in Molecular Brain, January 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins
Published in
Molecular Brain, January 2016
DOI 10.1186/s13041-016-0187-5
Pubmed ID
Authors

Qi Zhang, Hiromichi Goto, Sachiko Akiyoshi-Nishimura, Pavel Prosselkov, Chie Sano, Hiroshi Matsukawa, Kunio Yaguchi, Toshiaki Nakashiba, Shigeyoshi Itohara

Abstract

Vertebrate-specific neuronal genes are expected to play a critical role in the diversification and evolution of higher brain functions. Among them, the glycosylphosphatidylinositol (GPI)-anchored netrin-G subfamily members in the UNC6/netrin family are unique in their differential expression patterns in many neuronal circuits, and differential binding ability to their cognate homologous post-synaptic receptors. To gain insight into the roles of these genes in higher brain functions, we performed comprehensive behavioral batteries using netrin-G knockout mice. We found that two netrin-G paralogs that recently diverged in evolution, netrin-G1 and netrin-G2 (gene symbols: Ntng1 and Ntng2, respectively), were responsible for complementary behavioral functions. Netrin-G2, but not netrin-G1, encoded demanding sensorimotor functions. Both paralogs were responsible for complex vertebrate-specific cognitive functions and fine-scale regulation of basic adaptive behaviors conserved between invertebrates and vertebrates, such as spatial reference and working memory, attention, impulsivity and anxiety etc. Remarkably, netrin-G1 and netrin-G2 encoded a genetic "division of labor" in behavioral regulation, selectively mediating different tasks or even different details of the same task. At the cellular level, netrin-G1 and netrin-G2 differentially regulated the sub-synaptic localization of their cognate receptors and differentiated the properties of postsynaptic scaffold proteins in complementary neural pathways. Pre-synaptic netrin-G1 and netrin-G2 diversify the complexity of vertebrate behaviors and differentially regulate post-synaptic properties. Our findings constitute the first genetic analysis of the behavioral and synaptic diversification roles of a vertebrate GPI protein and presynaptic adhesion molecule family.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Researcher 8 22%
Student > Bachelor 4 11%
Student > Doctoral Student 3 8%
Other 1 3%
Other 3 8%
Unknown 9 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 24%
Biochemistry, Genetics and Molecular Biology 8 22%
Psychology 5 14%
Neuroscience 4 11%
Medicine and Dentistry 2 5%
Other 2 5%
Unknown 7 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 August 2017.
All research outputs
#7,399,228
of 24,363,506 outputs
Outputs from Molecular Brain
#338
of 1,171 outputs
Outputs of similar age
#113,265
of 402,949 outputs
Outputs of similar age from Molecular Brain
#14
of 39 outputs
Altmetric has tracked 24,363,506 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,171 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,949 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.