↓ Skip to main content

Emergence and evolution of yeast prion and prion-like proteins

Overview of attention for article published in BMC Ecology and Evolution, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
1 news outlet
twitter
7 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Emergence and evolution of yeast prion and prion-like proteins
Published in
BMC Ecology and Evolution, January 2016
DOI 10.1186/s12862-016-0594-3
Pubmed ID
Authors

Lu An, David Fitzpatrick, Paul M. Harrison

Abstract

Prions are transmissible, propagating alternative states of proteins, and are usually made from the fibrillar, beta-sheet-rich assemblies termed amyloid. Prions in the budding yeast Saccharomyces cerevisiae propagate heritable phenotypes, uncover hidden genetic variation, function in large-scale gene regulation, and can act like diseases. Almost all these amyloid prions have asparagine/glutamine-rich (N/Q-rich) domains. Other proteins, that we term here 'prionogenic amyloid formers' (PAFs), have been shown to form amyloid in vivo, and to have N/Q-rich domains that can propagate heritable states in yeast cells. Also, there are >200 other S.cerevisiae proteins with prion-like N/Q-rich sequence composition. Furthermore, human proteins with such N/Q-rich composition have been linked to the pathomechanisms of neurodegenerative amyloid diseases. Here, we exploit the increasing abundance of complete fungal genomes to examine the ancestry of prions/PAFs and other N/Q-rich proteins across the fungal kingdom. We find distinct evolutionary behavior for Q-rich and N-rich prions/PAFs; those of ancient ancestry (outside the budding yeasts, Saccharomycetes) are Q-rich, whereas N-rich cases arose early in Saccharomycetes evolution. This emergence of N-rich prion/PAFs is linked to a large-scale emergence of N-rich proteins during Saccharomycetes evolution, with Saccharomycetes showing a distinctive trend for population sizes of prion-like proteins that sets them apart from all the other fungi. Conversely, some clades, e.g. Eurotiales, have much fewer N/Q-rich proteins, and in some cases likely lose them en masse, perhaps due to greater amyloid intolerance, although they contain relatively more non-N/Q-rich predicted prions. We find that recent mutational tendencies arising during Saccharomycetes evolution (i.e., increased numbers of N residues and a tendency to form more poly-N tracts), contributed to the expansion/development of the prion phenomenon. Variation in these mutational tendencies in Saccharomycetes is correlated with the population sizes of prion-like proteins, thus implying that selection pressures on N/Q-rich protein sequences against amyloidogenesis are not generally maintained in budding yeasts. These results help to delineate further the limits and origins of N/Q-rich prions, and provide insight as a case study of the evolution of compositionally-defined protein domains.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 23%
Student > Bachelor 15 19%
Researcher 14 18%
Student > Master 9 11%
Student > Doctoral Student 5 6%
Other 10 13%
Unknown 9 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 32 40%
Agricultural and Biological Sciences 28 35%
Immunology and Microbiology 3 4%
Chemistry 2 3%
Neuroscience 2 3%
Other 2 3%
Unknown 11 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2016.
All research outputs
#2,574,820
of 25,371,288 outputs
Outputs from BMC Ecology and Evolution
#665
of 3,714 outputs
Outputs of similar age
#43,489
of 405,646 outputs
Outputs of similar age from BMC Ecology and Evolution
#9
of 76 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,646 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.