↓ Skip to main content

Multiple imputation of multiple multi-item scales when a full imputation model is infeasible

Overview of attention for article published in BMC Research Notes, January 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiple imputation of multiple multi-item scales when a full imputation model is infeasible
Published in
BMC Research Notes, January 2016
DOI 10.1186/s13104-016-1853-5
Pubmed ID
Authors

Catrin O. Plumpton, Tim Morris, Dyfrig A. Hughes, Ian R. White

Abstract

Missing data in a large scale survey presents major challenges. We focus on performing multiple imputation by chained equations when data contain multiple incomplete multi-item scales. Recent authors have proposed imputing such data at the level of the individual item, but this can lead to infeasibly large imputation models. We use data gathered from a large multinational survey, where analysis uses separate logistic regression models in each of nine country-specific data sets. In these data, applying multiple imputation by chained equations to the individual scale items is computationally infeasible. We propose an adaptation of multiple imputation by chained equations which imputes the individual scale items but reduces the number of variables in the imputation models by replacing most scale items with scale summary scores. We evaluate the feasibility of the proposed approach and compare it with a complete case analysis. We perform a simulation study to compare the proposed method with alternative approaches: we do this in a simplified setting to allow comparison with the full imputation model. For the case study, the proposed approach reduces the size of the prediction models from 134 predictors to a maximum of 72 and makes multiple imputation by chained equations computationally feasible. Distributions of imputed data are seen to be consistent with observed data. Results from the regression analysis with multiple imputation are similar to, but more precise than, results for complete case analysis; for the same regression models a 39 % reduction in the standard error is observed. The simulation shows that our proposed method can perform comparably against the alternatives. By substantially reducing imputation model sizes, our adaptation makes multiple imputation feasible for large scale survey data with multiple multi-item scales. For the data considered, analysis of the multiply imputed data shows greater power and efficiency than complete case analysis. The adaptation of multiple imputation makes better use of available data and can yield substantively different results from simpler techniques.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 31%
Student > Doctoral Student 11 13%
Student > Master 11 13%
Researcher 11 13%
Student > Bachelor 4 5%
Other 10 12%
Unknown 10 12%
Readers by discipline Count As %
Psychology 23 28%
Social Sciences 15 18%
Medicine and Dentistry 8 10%
Mathematics 6 7%
Business, Management and Accounting 5 6%
Other 11 13%
Unknown 15 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2016.
All research outputs
#17,783,561
of 22,842,950 outputs
Outputs from BMC Research Notes
#2,830
of 4,266 outputs
Outputs of similar age
#270,128
of 396,750 outputs
Outputs of similar age from BMC Research Notes
#91
of 134 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,266 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,750 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.