↓ Skip to main content

A two-phase procedure for non-normal quantitative trait genetic association study

Overview of attention for article published in BMC Bioinformatics, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A two-phase procedure for non-normal quantitative trait genetic association study
Published in
BMC Bioinformatics, January 2016
DOI 10.1186/s12859-016-0888-x
Pubmed ID
Authors

Wei Zhang, Huiyun Li, Zhaohai Li, Qizhai Li

Abstract

The nonparametric trend test (NPT) is well suitable for identifying the genetic variants associated with quantitative traits when the trait values do not satisfy the normal distribution assumption. If the genetic model, defined according to the mode of inheritance, is known, the NPT derived under the given genetic model is optimal. However, in practice, the genetic model is often unknown beforehand. The NPT derived from an uncorrected model might result in loss of power. When the underlying genetic model is unknown, a robust test is preferred to maintain satisfactory power. We propose a two-phase procedure to handle the uncertainty of the genetic model for non-normal quantitative trait genetic association study. First, a model selection procedure is employed to help choose the genetic model. Then the optimal test derived under the selected model is constructed to test for possible association. To control the type I error rate, we derive the joint distribution of the test statistics developed in the two phases and obtain the proper size. The proposed method is more robust than existing methods through the simulation results and application to gene DNAH9 from the Genetic Analysis Workshop 16 for associated with Anti-cyclic citrullinated peptide antibody further demonstrate its performance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 33%
Student > Bachelor 1 17%
Student > Ph. D. Student 1 17%
Unknown 2 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 17%
Business, Management and Accounting 1 17%
Computer Science 1 17%
Psychology 1 17%
Unknown 2 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 January 2016.
All research outputs
#15,355,821
of 22,842,950 outputs
Outputs from BMC Bioinformatics
#5,378
of 7,289 outputs
Outputs of similar age
#233,198
of 396,721 outputs
Outputs of similar age from BMC Bioinformatics
#103
of 135 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,289 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,721 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 135 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.