↓ Skip to main content

Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
127 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol
Published in
Biotechnology for Biofuels and Bioproducts, February 2016
DOI 10.1186/s13068-016-0427-z
Pubmed ID
Authors

Hiroshi Teramura, Kengo Sasaki, Tomoko Oshima, Fumio Matsuda, Mami Okamoto, Tomokazu Shirai, Hideo Kawaguchi, Chiaki Ogino, Ko Hirano, Takashi Sazuka, Hidemi Kitano, Jun Kikuchi, Akihiko Kondo

Abstract

The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv pretreatment is an attractive method for this purpose. However, as organosolv pretreatment uses high concentrations of organic solvents (>50 %), decreasing the concentration necessary for fractionation would help reduce processing costs. In this study, we sought to identify organic solvents capable of efficiently fractionating sorghum bagasse components at low concentrations. Five alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol) were used for organosolv pretreatment of sorghum bagasse at a concentration of 12.5 %. Sulfuric acid (1 %) was used as a catalyst. With 1-butanol and 1-pentanol, three fractions (black liquor, liquid fraction containing xylose, and cellulose-enriched solid fraction) were obtained after pretreatment. Two-dimensional nuclear magnetic resonance analysis revealed that the lignin aromatic components of raw sorghum bagasse were concentrated in the black liquor fraction, although the major lignin side-chain (β-O-4 linkage) was lost. Pretreatment with 1-butanol or 1-pentanol effectively removed p-coumarate, some guaiacyl, and syringyl. Compared with using no solvent, pretreatment with 1-butanol or 1-pentanol resulted in two-fold greater ethanol production from the solid fraction by Saccharomyces cerevisiae. Our results revealed that a low concentration (12.5 %) of a highly hydrophobic solvent such as 1-butanol or 1-pentanol can be used to separate the black liquor from the solid and liquid fractions. The efficient delignification and visible separation of the lignin-rich fraction possible with this method simplify the fractionation of sorghum bagasse.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 127 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 <1%
Unknown 126 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 18%
Student > Bachelor 22 17%
Student > Master 18 14%
Researcher 14 11%
Student > Doctoral Student 5 4%
Other 16 13%
Unknown 29 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 20%
Chemical Engineering 25 20%
Engineering 11 9%
Chemistry 10 8%
Biochemistry, Genetics and Molecular Biology 9 7%
Other 15 12%
Unknown 31 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2016.
All research outputs
#17,285,668
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#246,744
of 405,924 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#34
of 58 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 405,924 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.