↓ Skip to main content

Soluble adenylyl cyclase mediates hydrogen peroxide-induced changes in epithelial barrier function

Overview of attention for article published in Respiratory Research, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Soluble adenylyl cyclase mediates hydrogen peroxide-induced changes in epithelial barrier function
Published in
Respiratory Research, February 2016
DOI 10.1186/s12931-016-0329-4
Pubmed ID
Authors

Pedro Ivonnet, Hoshang Unwalla, Matthias Salathe, Gregory E. Conner

Abstract

Elevated H2O2 levels are associated with inflammatory diseases and H2O2 exposure is known to disrupt epithelial barrier function, leading to increased permeability and decreased electrical resistance. In normal human bronchial epithelial (NHBE) cells, fully differentiated at the air liquid interface (ALI), H2O2 activates an autocrine prostaglandin pathway that stimulates transmembrane adenylyl cyclase (tmAC) as well as soluble adenylyl cyclase (sAC), but the role of this autocrine pathway in H2O2-mediated barrier disruption is not entirely clear. To further characterize the mechanism of H2O2-induced barrier disruption, NHBE cultures were treated with H2O2 and evaluated for changes in transepithelial resistance and mannitol permeability using agonist and inhibitors to dissect the pathway. A short (<10 min) H2O2 treatment was sufficient to induce resistance and permeability changes that occurred 40 min to 1 h later and the changes were partially sensitive to EP1 but not EP4 receptor antagonists. EP1 receptors were localized to the apical compartment of NHBE. Resistance and permeability changes were sensitive to inhibition of sAC but not tmAC and were partially blocked by PKA inhibition. Pretreatment with a PLC inhibitor or an IP3 receptor antagonist reduced changes in resistance and permeability suggesting activation of sAC occurred through increased intracellular calcium. The data support an important role for prostaglandin activation of sAC and PKA in H2O2-induced barrier disruption.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 44%
Researcher 2 22%
Librarian 1 11%
Unknown 2 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 22%
Biochemistry, Genetics and Molecular Biology 1 11%
Computer Science 1 11%
Immunology and Microbiology 1 11%
Medicine and Dentistry 1 11%
Other 1 11%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2016.
All research outputs
#17,286,379
of 25,374,647 outputs
Outputs from Respiratory Research
#2,216
of 3,062 outputs
Outputs of similar age
#248,234
of 407,705 outputs
Outputs of similar age from Respiratory Research
#26
of 32 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 407,705 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.