↓ Skip to main content

Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma

Overview of attention for article published in Journal for Immunotherapy of Cancer, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma
Published in
Journal for Immunotherapy of Cancer, February 2016
DOI 10.1186/s40425-016-0111-7
Pubmed ID
Authors

Katherine Woods, Ashley J. Knights, Matthew Anaka, Ralf B. Schittenhelm, Anthony W. Purcell, Andreas Behren, Jonathan Cebon

Abstract

A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 17%
Researcher 5 14%
Other 4 11%
Student > Bachelor 3 9%
Professor 2 6%
Other 4 11%
Unknown 11 31%
Readers by discipline Count As %
Medicine and Dentistry 7 20%
Agricultural and Biological Sciences 6 17%
Immunology and Microbiology 5 14%
Biochemistry, Genetics and Molecular Biology 3 9%
Veterinary Science and Veterinary Medicine 1 3%
Other 1 3%
Unknown 12 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2020.
All research outputs
#3,415,350
of 25,374,647 outputs
Outputs from Journal for Immunotherapy of Cancer
#937
of 3,421 outputs
Outputs of similar age
#51,210
of 311,617 outputs
Outputs of similar age from Journal for Immunotherapy of Cancer
#6
of 15 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,421 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,617 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.