↓ Skip to main content

Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis

Overview of attention for article published in BMC Plant Biology, May 2019
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
11 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis
Published in
BMC Plant Biology, May 2019
DOI 10.1186/s12870-019-1791-1
Pubmed ID
Authors

Gennaro Carotenuto, Ivan Sciascia, Ludovica Oddi, Veronica Volpe, Andrea Genre

Abstract

The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Student > Master 6 17%
Researcher 4 11%
Professor 2 6%
Lecturer 2 6%
Other 3 8%
Unknown 12 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 33%
Biochemistry, Genetics and Molecular Biology 3 8%
Engineering 2 6%
Mathematics 1 3%
Computer Science 1 3%
Other 3 8%
Unknown 14 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2019.
All research outputs
#5,601,272
of 23,144,579 outputs
Outputs from BMC Plant Biology
#396
of 3,295 outputs
Outputs of similar age
#101,582
of 349,745 outputs
Outputs of similar age from BMC Plant Biology
#16
of 117 outputs
Altmetric has tracked 23,144,579 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,295 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 349,745 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.