↓ Skip to main content

ERK2 and Akt are negative regulators of insulin and Tumor Necrosis Factor-α stimulated VCAM-1 expression in rat aorta endothelial cells

Overview of attention for article published in Journal of Inflammation, February 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ERK2 and Akt are negative regulators of insulin and Tumor Necrosis Factor-α stimulated VCAM-1 expression in rat aorta endothelial cells
Published in
Journal of Inflammation, February 2016
DOI 10.1186/s12950-016-0115-6
Pubmed ID
Authors

Gregory B. Pott, Mark Tsurudome, Nadia Bamfo, Marc L. Goalstone

Abstract

Diabetes is quickly becoming the most widespread disorder in the Western world. Among the most prevalent effects of diabetes is atherosclerosis, which in turn is driven in part by inflammation. Both insulin and Tumor Necrosis Factor-alpha (TNFα) increase the presence of Vascular Cellular Adhesion Molecule-1 (VCAM-1) expression. The aim of this study is to determine the effects of downregulating Extracellular signal-Regulated Kinase-2 (ERK2) and Akt on insulin and TNFa-stimulated VCAM-1 expression. Here we begin to define the relationships between ERK2 and Akt regulation of insulin and TNFα-stimulated VCAM-1 expression in Rat Arterial Endothelial Cells (RAEC) by transfecting RAEC with ERK2 and Akt RNA interference (RNAi) and then treating these cells with insulin (10 nM) or TNFα (10 ng/mL) alone or in combination. Western blot analyses, flow cytometry and confocal microscopy were used to determine changes in VCAM-1 expression within the above-stated parameters. Cells transfected with ERK2 or Akt RNAi plasmids increased insulin and TNFα-stimulated VCAM-1 total protein expression significantly (P < 0.05) greater than that seen in mock transfected cells and expressed cell surface VCAM-1 greater than that seen in mock transfected cells as indicated by flow cytometry and confocal microscopy. Nevertheless, the decrease of both kinases did not increase insulin or TNFα-stimulated VCAM-1 expression above that seen when one or the other RNAi was present. Taken together, our results demonstrate that ERK2 and Akt may be negative regulators of insulin and TNF-α stimulated VCAM-1 and that their loss or down regulation might upregulate VCAM-1 expression and contribute to vascular disease.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 18%
Researcher 2 18%
Student > Ph. D. Student 1 9%
Student > Doctoral Student 1 9%
Student > Master 1 9%
Other 1 9%
Unknown 3 27%
Readers by discipline Count As %
Medicine and Dentistry 5 45%
Biochemistry, Genetics and Molecular Biology 2 18%
Chemistry 1 9%
Unknown 3 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 February 2016.
All research outputs
#20,655,488
of 25,371,288 outputs
Outputs from Journal of Inflammation
#278
of 425 outputs
Outputs of similar age
#231,258
of 312,893 outputs
Outputs of similar age from Journal of Inflammation
#4
of 9 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 425 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,893 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.