↓ Skip to main content

The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells

Overview of attention for article published in Nutrition & Metabolism, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells
Published in
Nutrition & Metabolism, February 2016
DOI 10.1186/s12986-016-0076-z
Pubmed ID
Authors

Thomas Plötz, Magnus Hartmann, Sigurd Lenzen, Matthias Elsner

Abstract

Type 2 diabetes is associated with increased plasma concentrations of non-esterified fatty acids (NEFAs), which trigger pancreatic β-cell dysfunction and apoptosis. Only long-chain saturated NEFAs induced lipotoxicity in rat insulin-producing cells in in vitro experiments, whereas unsaturated NEFAs were not toxic. Some unsaturated NEFAs even protected against lipotoxicity. In former studies it was suggested that long-chain unsaturated NEFAs, which induce the formation of lipid droplets, can cause sequestration of palmitic acid into lipid droplets. In the present structure-activity-relationship study the correlation between lipid droplet formation and the protection against palmitic acid induced lipotoxicity by unsaturated NEFAs in rat insulin-producing cells was examined. Rat insulin-producing RINm5F and INS-1E tissue culture cells were incubated in the presence of palmitic acid and unsaturated NEFAs with different chain lengths and different numbers of double bonds. The expression of the lipid droplet associated proteins perilipin 1 and 2 was repressed by the shRNA technique and the expression analyzed by qRT-PCR and Western blotting. Viability was measured by MTT assay and the accumulation of lipid droplets was quantified by fluorescence microscopy after Oil Red O staining. Long-chain unsaturated NEFAs strongly induce the formation of lipid droplets in rat insulin-producing RINm5F and INS-1E cells. In RINm5F cells incubated with 11-eicosenoic acid (C20:1) 27 % of the cell area was covered by lipid droplets corresponding to a 25-fold increase in comparison with control cells. On the other hand the saturated NEFA palmitic acid only induced minor lipid droplet formation. Viability analyses revealed only a minor toxicity of unsaturated NEFAs, whereas the cells were markedly sensitive to palmitic acid. Long-chain unsaturated NEFAs antagonized palmitic acid induced lipotoxicity during co-incubation, whereby no correlation existed between protection and the ability of lipid droplet formation. Perilipin 1 and 2 expression was decreased after incubation with C20:1 to about 80 % by shRNA. For the protective effect of long-chain unsaturated NEFAs against lipotoxicity of saturated NEFAs repression of perilipin was not of crucial importance. Long-chain unsaturated fatty acids protected rat insulin-producing cells against lipotoxicity of saturated fatty acids. This protective effect was not dependent on lipid droplet formation. Thus lipid droplet formation is apparently not essential for the protective effect of unsaturated NEFAs against palmitic acid toxicity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 76 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 21%
Researcher 14 18%
Student > Master 12 16%
Student > Bachelor 9 12%
Student > Postgraduate 3 4%
Other 6 8%
Unknown 16 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 30%
Agricultural and Biological Sciences 20 26%
Medicine and Dentistry 6 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Chemistry 3 4%
Other 5 7%
Unknown 15 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 March 2016.
All research outputs
#13,459,901
of 22,851,489 outputs
Outputs from Nutrition & Metabolism
#559
of 950 outputs
Outputs of similar age
#143,231
of 298,590 outputs
Outputs of similar age from Nutrition & Metabolism
#12
of 23 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 950 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.5. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,590 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.