↓ Skip to main content

Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, February 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
151 Dimensions

Readers on

mendeley
152 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria
Published in
Biotechnology for Biofuels and Bioproducts, February 2016
DOI 10.1186/s13068-016-0454-9
Pubmed ID
Authors

Bettina Müller, Li Sun, Maria Westerholm, Anna Schnürer

Abstract

Syntrophic acetate oxidation (SAO) is the predominant pathway for methane production in high ammonia anaerobic digestion processes. The bacteria (SAOB) occupying this niche and the metabolic pathway are poorly understood. Phylogenetic diversity and strict cultivation requirements hinder comprehensive research and discovery of novel SAOB. Most SAOB characterised to date are affiliated to the physiological group of acetogens. Formyltetrahydrofolate synthetase is a key enzyme of both acetogenic and SAO metabolism. The encoding fhs gene has therefore been identified as a suitable functional marker, using a newly designed primer pair. In this comparative study, we used a combination of terminal restriction fragment length polymorphism profiling, clone-based comparison, qPCR and Illumina amplicon sequencing to assess the bacterial community and acetogenic sub-community prevailing in high- and low-ammonia laboratory-scale digesters in order to delineate potential SAOB communities. Potential candidates identified were further tracked in a number of low-ammonia and high-ammonia laboratory-scale and large-scale digesters in order to reveal a potential function in SAO. All methodical approaches revealed significant changes in the bacterial community composition concurrently with increasing ammonia and predominance of SAO. The acetogenic community under high ammonia conditions was revealed to be generally heterogeneous, but formed distinct phylogenetic clusters. The clusters differed clearly from those found under low-ammonia conditions and represented an acetogenic assemblage unique for biogas processes and recurring in a number of high-ammonia processes, indicating potential involvement in SAO. The phylogenetic affiliation and population dynamics observed point to a key community, belonging mainly to the Clostridia class, in particular to the orders Clostridiales and Thermoanaerobacterales, which appear to specialise in SAO rather than being metabolically versatile. Overall, the results reported here provide evidence of functional importance of the bacterial families identified in high-ammonia systems and extend existing knowledge of bacterial and acetogenic assemblages at low and high ammonia levels. This information will be of help in monitoring and assessing the impacts on the SAOB community in order to identify characteristics of robust and productive high ammonia biogas processes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 152 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 2 1%
Unknown 150 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 25%
Researcher 23 15%
Student > Master 15 10%
Student > Postgraduate 12 8%
Student > Bachelor 9 6%
Other 19 13%
Unknown 36 24%
Readers by discipline Count As %
Environmental Science 28 18%
Biochemistry, Genetics and Molecular Biology 21 14%
Agricultural and Biological Sciences 19 13%
Engineering 17 11%
Chemical Engineering 4 3%
Other 14 9%
Unknown 49 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2016.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,416
of 1,578 outputs
Outputs of similar age
#268,629
of 311,887 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#43
of 50 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,887 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.