↓ Skip to main content

High-throughput discovery of post-transcriptional cis-regulatory elements

Overview of attention for article published in BMC Genomics, March 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-throughput discovery of post-transcriptional cis-regulatory elements
Published in
BMC Genomics, March 2016
DOI 10.1186/s12864-016-2479-7
Pubmed ID
Authors

Erin M. Wissink, Elizabeth A. Fogarty, Andrew Grimson

Abstract

Post-transcriptional gene regulation controls the amount of protein produced from an individual mRNA by altering rates of decay and translation. Many sequence elements that direct post-transcriptional regulation have been found; in mammals, most such elements are located within the 3' untranslated regions (3'UTRs). Comparative genomic studies demonstrate that mammalian 3'UTRs contain extensive conserved sequence tracts, yet only a small fraction corresponds to recognized elements, implying that many additional novel elements exist. Despite a variety of computational, molecular, and biochemical approaches, identifying functional 3'UTRs elements remains difficult. We created a high-throughput cell-based screen that enables identification of functional post-transcriptional 3'UTR regulatory elements. Our system exploits integrated single-copy reporters, which are expressed and processed as endogenous genes. We screened many thousands of short random sequences for their regulatory potential. Control sequences with known effects were captured effectively using our approach, establishing that our methodology was robust. We found hundreds of functional sequences, which we validated in traditional reporter assays, including verifying their regulatory impact in native sequence contexts. Although 3'UTRs are typically considered repressive, most of the functional elements were activating, including ones that were preferentially conserved. Additionally, we adapted our screening approach to examine the effect of elements on RNA abundance, revealing that most elements act by altering mRNA stability. We developed and used a high-throughput approach to discover hundreds of post-transcriptional cis-regulatory elements. These results imply that most human 3'UTRs contain many previously unrecognized cis-regulatory elements, many of which are activating, and that the post-transcriptional fate of an mRNA is largely due to the actions of many individual cis-regulatory elements within its 3'UTR.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 64 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 26%
Researcher 12 18%
Student > Bachelor 6 9%
Student > Doctoral Student 4 6%
Student > Master 4 6%
Other 4 6%
Unknown 18 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 32%
Biochemistry, Genetics and Molecular Biology 18 28%
Engineering 3 5%
Sports and Recreations 2 3%
Nursing and Health Professions 1 2%
Other 2 3%
Unknown 18 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2016.
All research outputs
#13,226,218
of 22,852,911 outputs
Outputs from BMC Genomics
#4,771
of 10,658 outputs
Outputs of similar age
#139,179
of 298,618 outputs
Outputs of similar age from BMC Genomics
#96
of 211 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,658 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,618 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 211 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.