↓ Skip to main content

Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus

Overview of attention for article published in Parasites & Vectors, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus
Published in
Parasites & Vectors, March 2016
DOI 10.1186/s13071-016-1398-4
Pubmed ID
Authors

CS Vieira, PJ Waniek, DP Castro, DP Mattos, OC Moreira, P Azambuja

Abstract

Rhodnius prolixus is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In natural habitats, these insects are in contact with a variety of bacteria, fungi, virus and parasites that they acquire from both their environments and the blood of their hosts. Microorganism ingestion may trigger the synthesis of humoral immune factors, including antimicrobial peptides (AMPs). The objective of this study was to compare the expression levels of AMPs (defensins and prolixicin) in the different midgut compartments and the fat body of R. prolixus infected with different T. cruzi strains. The T. cruzi Dm 28c clone (TcI) successfully develops whereas Y strain (TcII) does not complete its life- cycle in R. prolixus. The relative AMP gene expressions were evaluated in the insect midgut and fat body infected on different days with the T. cruzi Dm 28c clone and the Y strain. The influence of the antibacterial activity on the intestinal microbiota was taken into account. The presence of T. cruzi in the midgut of R. prolixus was analysed by optical microscope. The relative expression of the antimicrobial peptides encoding genes defensin (defA, defB, defC) and prolixicin (prol) was quantified by RT-qPCR. The antimicrobial activity of the AMPs against Staphylococcus aureus, Escherichia coli and Serratia marcescens were evaluated in vitro using turbidimetric tests with haemolymph, anterior and posterior midgut samples. Midgut bacteria were quantified using colony forming unit (CFU) assays and real time quantitative polymerase chain reaction (RT-qPCR). Our results showed that the infection of R. prolixus by the two different T. cruzi strains exhibited different temporal AMP induction profiles in the anterior and posterior midgut. Insects infected with T. cruzi Dm 28c exhibited an increase in defC and prol transcripts and a simultaneous reduction in the midgut cultivable bacteria population, Serratia marcescens and Rhodococcus rhodnii. In contrast, the T. cruzi Y strain neither induced AMP gene expression in the gut nor reduced the number of colony formation units in the anterior midgut. Beside the induction of a local immune response in the midgut after feeding R. prolixus with T. cruzi, a simultaneous systemic response was also detected in the fat body. R. prolixus AMP gene expressions and the cultivable midgut bacterial microbiota were modulated in distinct patterns, which depend on the T. cruzi genotype used for infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 95 99%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 13 14%
Student > Bachelor 12 13%
Researcher 11 11%
Student > Master 11 11%
Student > Ph. D. Student 9 9%
Other 11 11%
Unknown 29 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 26%
Agricultural and Biological Sciences 23 24%
Immunology and Microbiology 5 5%
Nursing and Health Professions 2 2%
Unspecified 1 1%
Other 5 5%
Unknown 35 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2016.
All research outputs
#13,768,217
of 22,854,458 outputs
Outputs from Parasites & Vectors
#2,604
of 5,470 outputs
Outputs of similar age
#148,481
of 298,400 outputs
Outputs of similar age from Parasites & Vectors
#79
of 174 outputs
Altmetric has tracked 22,854,458 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,470 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,400 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 174 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.