↓ Skip to main content

Depletion of activated macrophages with a folate receptor-beta-specific antibody improves symptoms in mouse models of rheumatoid arthritis

Overview of attention for article published in Arthritis Research & Therapy, June 2019
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Depletion of activated macrophages with a folate receptor-beta-specific antibody improves symptoms in mouse models of rheumatoid arthritis
Published in
Arthritis Research & Therapy, June 2019
DOI 10.1186/s13075-019-1912-0
Pubmed ID
Authors

Yingwen Hu, Bingbing Wang, Jiayin Shen, Stewart A. Low, Karson S. Putt, Hans W. M. Niessen, Eric L. Matteson, Linda Murphy, Clemens Ruppert, Gerrit Jansen, Stephen J. Oliver, Yang Feng, Dimiter S. Dimitrov, Cheryl Nickerson-Nutter, Philip S. Low

Abstract

Most therapies for autoimmune and inflammatory diseases either neutralize or suppress production of inflammatory cytokines produced by activated macrophages (e.g., TNFα, IL-1, IL-6, IL-17, GM-CSF). However, no approved therapies directly target this activated subset of macrophages. First, we undertook to examine whether the folate receptor beta (FR-β) positive subpopulation of macrophages, which marks the inflammatory subset in animal models of rheumatoid arthritis, might constitute the prominent population of macrophages in inflamed lesions in humans. Next, we utilized anti-FR-β monoclonal antibodies capable of mediating antibody-dependent cell cytotoxicity (ADCC) to treat animal models of rheumatoid arthritis and peritonitis. Human tissue samples of rheumatoid arthritis, Crohn's disease, ulcerative colitis, idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, chronic obstructive pulmonary disease, systemic lupus erythematosus, psoriasis, and scleroderma are all characterized by dramatic accumulation of macrophages that express FR-β, a protein not expressed on resting macrophages or any other healthy tissues. A monoclonal antibody to FR-β accumulates specifically in inflamed lesions of murine inflammatory disease models and successfully treats such models of rheumatoid arthritis and peritonitis. More importantly, elimination of FR-β-positive macrophages upon treatment with an anti-FR-β monoclonal antibody promotes the departure of other immune cells, including T cells, B cells, neutrophils, and dendritic cells from the inflamed lesions. These data suggest that specific elimination of FR-β-expressing macrophages may constitute a highly specific therapy for multiple autoimmune and inflammatory diseases and that a recently developed human anti-human FR-β monoclonal antibody (m909) might contribute to suppression of this subpopulation of macrophages.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 14%
Student > Ph. D. Student 6 9%
Student > Bachelor 5 8%
Student > Doctoral Student 5 8%
Student > Postgraduate 5 8%
Other 12 19%
Unknown 22 34%
Readers by discipline Count As %
Medicine and Dentistry 14 22%
Immunology and Microbiology 12 19%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Biochemistry, Genetics and Molecular Biology 4 6%
Chemistry 3 5%
Other 6 9%
Unknown 21 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2020.
All research outputs
#4,241,949
of 25,385,509 outputs
Outputs from Arthritis Research & Therapy
#950
of 3,381 outputs
Outputs of similar age
#81,065
of 368,140 outputs
Outputs of similar age from Arthritis Research & Therapy
#35
of 63 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,381 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,140 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.