↓ Skip to main content

Learning stochastic process-based models of dynamical systems from knowledge and data

Overview of attention for article published in BMC Systems Biology, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Learning stochastic process-based models of dynamical systems from knowledge and data
Published in
BMC Systems Biology, March 2016
DOI 10.1186/s12918-016-0273-4
Pubmed ID
Authors

Jovan Tanevski, Ljupčo Todorovski, Sašo Džeroski

Abstract

Identifying a proper model structure, using methods that address both structural and parameter uncertainty, is a crucial problem within the systems approach to biology. And yet, it has a marginal presence in the recent literature. While many existing approaches integrate methods for simulation and parameter estimation of a single model to address parameter uncertainty, only few of them address structural uncertainty at the same time. The methods for handling structure uncertainty often oversimplify the problem by allowing the human modeler to explicitly enumerate a relatively small number of alternative model structures. On the other hand, process-based modeling methods provide flexible modular formalisms for specifying large classes of plausible model structures, but their scope is limited to deterministic models. Here, we aim at extending the scope of process-based modeling methods to inductively learn stochastic models from knowledge and data. We combine the flexibility of process-based modeling in terms of addressing structural uncertainty with the benefits of stochastic modeling. The proposed method combines search trough the space of plausible model structures, the parsimony principle and parameter estimation to identify a model with optimal structure and parameters. We illustrate the utility of the proposed method on four stochastic modeling tasks in two domains: gene regulatory networks and epidemiology. Within the first domain, using synthetically generated data, the method successfully recovers the structure and parameters of known regulatory networks from simulations. In the epidemiology domain, the method successfully reconstructs previously established models of epidemic outbreaks from real, sparse and noisy measurement data. The method represents a unified approach to modeling dynamical systems that allows for flexible formalization of the space of candidate model structures, deterministic and stochastic interpretation of model dynamics, and automated induction of model structure and parameters from data. The method is able to reconstruct models of dynamical systems from synthetic and real data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Germany 1 3%
Unknown 33 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 23%
Student > Ph. D. Student 8 23%
Student > Master 4 11%
Student > Bachelor 3 9%
Other 2 6%
Other 4 11%
Unknown 6 17%
Readers by discipline Count As %
Computer Science 5 14%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 4 11%
Engineering 4 11%
Mathematics 3 9%
Other 7 20%
Unknown 7 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2016.
All research outputs
#14,255,539
of 22,858,915 outputs
Outputs from BMC Systems Biology
#544
of 1,142 outputs
Outputs of similar age
#159,993
of 300,114 outputs
Outputs of similar age from BMC Systems Biology
#7
of 14 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.