↓ Skip to main content

C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury

Overview of attention for article published in Molecular Neurodegeneration, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury
Published in
Molecular Neurodegeneration, March 2016
DOI 10.1186/s13024-016-0089-0
Pubmed ID
Authors

Sean M. Silverman, Byung-Jin Kim, Garreth R. Howell, Joselyn Miller, Simon W. M. John, Robert J. Wordinger, Abbot F. Clark

Abstract

C1q represents the initiating protein of the classical complement cascade, however recent findings indicate pathway independent roles such as developmental pruning of retinal ganglion cell (RGC) axons. Furthermore, chronic neuroinflammation, including increased expression of C1q and activation of microglia and astrocytes, appears to be a common finding among many neurodegenerative disease models. Here we compare the effects of a retinal ischemia/reperfusion (I/R) injury on glial activation and neurodegeneration in wild type (WT) and C1qa-deficient mice in the retina and superior colliculus (SC). Retinal I/R was induced in mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. Glial cell activation and population changes were assessed using immunofluorescence. Neuroprotection was determined using histological measurements of retinal layer thickness, RGC counts, and visual function by flash electroretinography (ERG). Retinal I/R injury significantly upregulated C1q expression in the retina as early as 72 h and within 7 days in the superficial SC, and was sustained as long as 28 days. Accompanying increased C1q expression was activation of microglia and astrocytes as well as a significantly increased glial population density observed in the retina and SC. Microglial activation and changes in density were completely ablated in C1qa-deficient mice, interestingly however there was no effect on astrocytes. Furthermore, loss of C1qa significantly rescued I/R-induced loss of RGCs and protected against retinal layer thinning in comparison to WT mice. ERG assessment revealed early preservation of b-wave amplitude deficits from retinal I/R injury due to C1qa-deficiency that was lost by day 28. Our results for the first time demonstrate the spatiotemporal changes in the neuroinflammatory response following retinal I/R injury at both local and distal sites of injury. In addition, we have shown a role for C1q as a primary mediator of microglial activation and pathological damage. This suggests developmental mechanisms of C1q may be re-engaged during injury response, modulation of which may be beneficial for neuroprotection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 84 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 23%
Researcher 13 15%
Student > Master 13 15%
Student > Bachelor 11 13%
Student > Doctoral Student 4 5%
Other 9 11%
Unknown 15 18%
Readers by discipline Count As %
Neuroscience 27 32%
Agricultural and Biological Sciences 12 14%
Medicine and Dentistry 10 12%
Biochemistry, Genetics and Molecular Biology 7 8%
Psychology 4 5%
Other 6 7%
Unknown 18 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2016.
All research outputs
#3,205,227
of 22,858,915 outputs
Outputs from Molecular Neurodegeneration
#477
of 849 outputs
Outputs of similar age
#54,302
of 300,491 outputs
Outputs of similar age from Molecular Neurodegeneration
#16
of 20 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 849 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.2. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,491 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.