↓ Skip to main content

Preservation of methylated CpG dinucleotides in human CpG islands

Overview of attention for article published in Biology Direct, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Preservation of methylated CpG dinucleotides in human CpG islands
Published in
Biology Direct, March 2016
DOI 10.1186/s13062-016-0113-x
Pubmed ID
Authors

Alexander Y. Panchin, Vsevolod J. Makeev, Yulia A. Medvedeva

Abstract

CpG dinucleotides are extensively underrepresented in mammalian genomes. It is widely accepted that genome-wide CpG depletion is predominantly caused by an elevated CpG > TpG mutation rate due to frequent cytosine methylation in the CpG context. Meanwhile the CpG content in genomic regions called CpG islands (CGIs) is noticeably higher. This observation is usually explained by lower CpG > TpG substitution rates within CGIs due to reduced cytosine methylation levels. By combining genome-wide data on substitutions and methylation levels in several human cell types we have shown that cytosine methylation in human sperm cells was strongly and consistently associated with increased CpG > TpG substitution rates. In contrast, this correlation was not observed for embryonic stem cells or fibroblasts. Surprisingly, the decreased sperm CpG methylation level was insufficient to explain the reduced CpG > TpG substitution rates in CGIs. While cytosine methylation in human sperm cells is strongly associated with increased CpG > TpG substitution rates, substitution rates are significantly reduced within CGIs even after sperm CpG methylation levels and local GC content are controlled for. Our findings are consistent with strong negative selection preserving methylated CpGs within CGIs including intergenic ones. Reviewed by: Vladimir Kuznetsov, Shamil Sunyaev, Alexey Kondrashov.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 22%
Researcher 12 22%
Student > Master 5 9%
Student > Bachelor 4 7%
Student > Doctoral Student 4 7%
Other 9 16%
Unknown 9 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 33%
Agricultural and Biological Sciences 11 20%
Pharmacology, Toxicology and Pharmaceutical Science 5 9%
Engineering 4 7%
Computer Science 2 4%
Other 5 9%
Unknown 10 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2018.
All research outputs
#14,843,597
of 22,858,915 outputs
Outputs from Biology Direct
#356
of 487 outputs
Outputs of similar age
#170,254
of 300,114 outputs
Outputs of similar age from Biology Direct
#11
of 13 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 487 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.