↓ Skip to main content

Ethanolic extract of Descurainia sophia seeds sensitizes A549 human lung cancer cells to TRAIL cytotoxicity by upregulating death receptors

Overview of attention for article published in BMC Complementary Medicine and Therapies, April 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ethanolic extract of Descurainia sophia seeds sensitizes A549 human lung cancer cells to TRAIL cytotoxicity by upregulating death receptors
Published in
BMC Complementary Medicine and Therapies, April 2016
DOI 10.1186/s12906-016-1094-0
Pubmed ID
Authors

Jong-Shik Park, Chae Jun Lim, Ok-Sun Bang, No Soo Kim

Abstract

Our previous genome-wide gene expression analysis revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors 4 (DR4) and 5 (DR5) are markedly upregulated by the ethanolic extract of D. sohia seeds (EEDS) in A549 TRAIL-refractory cancer cells. In the present study, we investigated whether the EEDS-mediated upregulation of TRAIL death receptors was associated with increased TRAIL-mediated toxicity in A549 cells in vitro. Cell proliferation and viability were determined by an automatic cell counter. Gene silencing was performed by introducing small interfering RNA into cells. Expression changes of cellular proteins were determined by western blot analysis. Apoptotic cell death was monitored by western blot analysis. Analysis of variance followed by the post-hoc Dunnett's test was used to compare the data. EEDS treatment increased both mRNA and protein levels of DR4 and DR5 in the TRAIL refractory A549 cells. Co-treatment of A549 cells with sub-lethal dose of EEDS and recombinant TRAIL increased the apoptotic cell death. Upregulation of DR5 by EEDS was mediated by an endoplasmic reticulum stress-induced transcription factor, CCAAT/enhancer-binding protein homologous protein (CHOP), and knockdown of CHOP expression inhibited EEDS-induced DR5 upregulation and abolished the EEDS-associated increase in TRAIL toxicity in A549 cells. EEDS can sensitize A549 cells to TRAIL cytotoxicity by upregulation of TRAIL death receptors. Our findings suggested that EEDS is a good initial herbal source for the development of an anticancer supplement for anticancer therapeutics associated with TRAIL.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 20%
Student > Doctoral Student 2 13%
Student > Ph. D. Student 2 13%
Student > Master 1 7%
Researcher 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 27%
Medicine and Dentistry 4 27%
Biochemistry, Genetics and Molecular Biology 1 7%
Agricultural and Biological Sciences 1 7%
Engineering 1 7%
Other 0 0%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 April 2016.
All research outputs
#20,318,358
of 22,860,626 outputs
Outputs from BMC Complementary Medicine and Therapies
#2,980
of 3,634 outputs
Outputs of similar age
#254,561
of 300,331 outputs
Outputs of similar age from BMC Complementary Medicine and Therapies
#36
of 48 outputs
Altmetric has tracked 22,860,626 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,634 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,331 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.