↓ Skip to main content

Single-cell analysis of long non-coding RNAs in the developing human neocortex

Overview of attention for article published in Genome Biology, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

blogs
2 blogs
twitter
11 X users
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
311 Dimensions

Readers on

mendeley
469 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Single-cell analysis of long non-coding RNAs in the developing human neocortex
Published in
Genome Biology, April 2016
DOI 10.1186/s13059-016-0932-1
Pubmed ID
Authors

Siyuan John Liu, Tomasz J. Nowakowski, Alex A. Pollen, Jan H. Lui, Max A. Horlbeck, Frank J. Attenello, Daniel He, Jonathan S. Weissman, Arnold R. Kriegstein, Aaron A. Diaz, Daniel A. Lim

Abstract

Long non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that can regulate molecular and cellular processes in brain development and disease. LncRNAs exhibit cell type- and tissue-specific expression, but little is known about the expression and function of lncRNAs in the developing human brain. Furthermore, it has been unclear whether lncRNAs are highly expressed in subsets of cells within tissues, despite appearing lowly expressed in bulk populations. We use strand-specific RNA-seq to deeply profile lncRNAs from polyadenylated and total RNA obtained from human neocortex at different stages of development, and we apply this reference to analyze the transcriptomes of single cells. While lncRNAs are generally detected at low levels in bulk tissues, single-cell transcriptomics of hundreds of neocortex cells reveal that many lncRNAs are abundantly expressed in individual cells and are cell type-specific. Notably, LOC646329 is a lncRNA enriched in single radial glia cells but is detected at low abundance in tissues. CRISPRi knockdown of LOC646329 indicates that this lncRNA regulates cell proliferation. The discrete and abundant expression of lncRNAs among individual cells has important implications for both their biological function and utility for distinguishing neural cell types.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 469 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 5 1%
Sweden 2 <1%
France 1 <1%
Turkey 1 <1%
Germany 1 <1%
China 1 <1%
Denmark 1 <1%
Japan 1 <1%
Poland 1 <1%
Other 0 0%
Unknown 455 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 117 25%
Researcher 95 20%
Student > Master 48 10%
Student > Bachelor 41 9%
Student > Postgraduate 28 6%
Other 58 12%
Unknown 82 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 144 31%
Agricultural and Biological Sciences 107 23%
Neuroscience 58 12%
Medicine and Dentistry 20 4%
Computer Science 19 4%
Other 33 7%
Unknown 88 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 April 2024.
All research outputs
#1,812,844
of 25,758,695 outputs
Outputs from Genome Biology
#1,495
of 4,514 outputs
Outputs of similar age
#29,314
of 316,241 outputs
Outputs of similar age from Genome Biology
#35
of 77 outputs
Altmetric has tracked 25,758,695 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,514 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.5. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,241 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.