↓ Skip to main content

Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis
Published in
Biotechnology for Biofuels and Bioproducts, April 2016
DOI 10.1186/s13068-016-0501-6
Pubmed ID
Authors

Qiaojuan Yan, Xiaojie Duan, Yu Liu, Zhengqiang Jiang, Shaoqing Yang

Abstract

The biodiesel production can be carried out by transesterification using either chemical or enzymatic process. The enzymatic transesterification is more promising as it offers an environmental friendly option compared to the chemical process, where the lipases with high catalytic efficiency and good stability play a key role. Hence, it is of great value to identify novel lipases which are suitable for biodiesel production. A lipase gene (ReLipA) from Rhizomucor endophyticus was cloned and heterologously expressed in Pichia pastoris. ReLipA shared the highest identity of 61 % with the lipases from Rhizopus delemar, Rhizopus oryzae, and Saccharomyces cerevisiae. The recombinant lipase (ReLipA) was secreted as an active protein with the highest activity of 1961 U mL(-1) in a 5-L fermentor by high cell-density fermentation. ReLipA was purified to homogeneity with a recovery yield of 75.7 %. The purified enzyme was most active at pH 6.0 and 40 °C, respectively, and it was stable up to 55 °C. ReLipA displayed 75 % of its maximal activity at 0 °C, indicating that it is a cold-adapted lipase. It exhibited broad substrate specificity toward various p-nitrophenyl esters and triglycerides. ReLipA hydrolyzed triolein to release mainly 1,2-diolein without the formation of 1,3-diolein, suggesting that it is a sn-1,3 regiospecific lipase. Furthermore, ReLipA synthesized different types of oleates by esterification using oleic acid and short chain alcohols (e.g., methanol, ethanol, and butanol) as the substrates with the highest conversion yield of 82.2 %. Therefore, the cold-adapted lipase may be a good biocatalyst in ester synthesis in biodiesel industry. A novel cold-adapted lipase was identified and characterized. The high yield and excellent properties may confer the enzyme with great potential for biodiesel production in bioenergy industry. This is the first report on a cold-adapted lipase from Rhizomucor species.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Iran, Islamic Republic of 1 2%
Uruguay 1 2%
Unknown 42 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 18%
Researcher 5 11%
Professor 5 11%
Student > Bachelor 5 11%
Student > Master 5 11%
Other 9 20%
Unknown 7 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 25%
Biochemistry, Genetics and Molecular Biology 8 18%
Environmental Science 4 9%
Engineering 4 9%
Chemistry 2 5%
Other 5 11%
Unknown 10 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2016.
All research outputs
#17,286,379
of 25,374,647 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#193,532
of 315,339 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#31
of 39 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,339 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.