↓ Skip to main content

Ribosome reinitiation at leader peptides increases translation of bacterial proteins

Overview of attention for article published in Biology Direct, April 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ribosome reinitiation at leader peptides increases translation of bacterial proteins
Published in
Biology Direct, April 2016
DOI 10.1186/s13062-016-0123-8
Pubmed ID
Authors

Semen A. Korolev, Oleg A. Zverkov, Alexandr V. Seliverstov, Vassily A. Lyubetsky

Abstract

Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well. This article was reviewed by Piotr Zielenkiewicz and István Simon.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 7%
Unknown 14 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Ph. D. Student 3 20%
Professor 2 13%
Student > Doctoral Student 1 7%
Student > Bachelor 1 7%
Other 1 7%
Unknown 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 47%
Agricultural and Biological Sciences 3 20%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2016.
All research outputs
#12,659,144
of 22,862,742 outputs
Outputs from Biology Direct
#298
of 487 outputs
Outputs of similar age
#120,371
of 269,982 outputs
Outputs of similar age from Biology Direct
#9
of 14 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 487 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,982 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.