↓ Skip to main content

Cone-beam computed tomography in hypofractionated stereotactic radiotherapy for brain metastases

Overview of attention for article published in Radiation Oncology, April 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cone-beam computed tomography in hypofractionated stereotactic radiotherapy for brain metastases
Published in
Radiation Oncology, April 2012
DOI 10.1186/1748-717x-7-54
Pubmed ID
Authors

Gianluca Ingrosso, Roberto Miceli, Dahlia Fedele, Elisabetta Ponti, Michaela Benassi, Rosaria Barbarino, Luana Di Murro, Emilia Giudice, Federico Santarelli, Riccardo Santoni

Abstract

ABSTRACT: BACKGROUND: To assess interfraction translational and rotational setup errors, in patients treated with image-guided hypofractionated stereotactic radiotherapy, immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. METHODS: 37 patients with 47 brain metastases were treated with hypofractionated stererotactic radiotherapy. All patients were immobilized with a combination of a thermoplastic mask and a bite-block fixed to a stereotactic frame support. Daily cone-beam CT scans were acquired for every patient before the treatment session and were matched online with planning CT images, for 3D image registration. The mean value and standard deviation of all translational (X,Y,Z) and rotational errors (thetax, thetay, thetaz) were calculated for the matching results of bone matching algorithm. RESULTS: A total of 194 CBCT scans were analyzed. Mean +/- standard deviation of translational errors (X, Y, Z) were respectively 0.5 +/- 1.6 mm (range -5.7 and 5.9 mm) in X; 0.4 +/- 2.7 mm (range -8.2 and 12.1 mm) in Y; 0.4 +/- 1.9 mm (range -7.0 and 14 mm) in Z; median and 90th percentile were respectively within 0.5 mm and 2.4 mm in X, 0.3 mm and 3.2 mm in Y, 0.3 mm and 2.2 mm in Z. Mean +/- standard deviation of rotational errors (thetax, thetay, thetaz) were respectively 0.0 degrees +/- 1.3 degrees (thetax) (range -6.0 degrees and 3.1 degrees); -0.1 degrees +/- 1.1 degrees (thetay) (range -3.0 degrees and 2.4 degrees); -0.6 degrees +/- 1.4 degrees (thetaz) (range -5.0 degrees and 3.3 degrees). Median and 90th percentile of rotational errors were respectively within 0.1 degrees and 1.4 degrees (thetax), 0.0 degrees and 1.2 degrees (thetay), 0.0 degrees and 0.9 degrees (thetaz). Mean +/- SD of 3D vector was 3.1 +/- 2.1 mm (range 0.3 and 14.9 mm); median and 90th percentile of 3D vector was within 2.7 mm and 5.1 mm. CONCLUSIONS: Hypofractionated stereotactic radiotherapy have the significant limitation of uncertainty in interfraction repeatability of the patient setup; image-guided radiotherapy using cone-beam computed tomography improves the accuracy of the treatment delivery reducing setup uncertainty, giving the possibility of 3-dimensional anatomic informations in the treatment position.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 20%
Student > Bachelor 6 10%
Other 5 8%
Student > Postgraduate 4 7%
Student > Doctoral Student 3 5%
Other 10 17%
Unknown 19 32%
Readers by discipline Count As %
Medicine and Dentistry 23 39%
Physics and Astronomy 5 8%
Nursing and Health Professions 4 7%
Agricultural and Biological Sciences 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 3 5%
Unknown 21 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2012.
All research outputs
#18,305,445
of 22,664,267 outputs
Outputs from Radiation Oncology
#1,407
of 2,044 outputs
Outputs of similar age
#124,118
of 160,877 outputs
Outputs of similar age from Radiation Oncology
#12
of 24 outputs
Altmetric has tracked 22,664,267 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,044 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 160,877 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.