↓ Skip to main content

Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis

Overview of attention for article published in Parasites & Vectors, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
94 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis
Published in
Parasites & Vectors, April 2016
DOI 10.1186/s13071-016-1513-6
Pubmed ID
Authors

Xuelian Chang, Daibin Zhong, Eugenia Lo, Qiang Fang, Mariangela Bonizzoni, Xiaoming Wang, Ming-Chieh Lee, Guofa Zhou, Guoding Zhu, Qian Qin, Xiaoguang Chen, Liwang Cui, Guiyun Yan

Abstract

Anopheles sinensis is one of the most abundant vectors of malaria and other diseases in Asia. Vector control through the use of insecticides is the front line control method of vector-borne diseases. Pyrethroids are the most commonly used insecticides due to their low toxicity to vertebrates and low repellency. However, the extensive use of insecticides has imposed strong selection pressure on mosquito populations for resistance. High levels of resistance to pyrethroid insecticides and various mutations and haplotypes in the para sodium channel gene that confers knockdown resistance (kdr) have been detected in An. sinensis. Despite the importance of kdr mutations in pyrethroid resistance, the evolutionary origin of the kdr mutations is unknown. This study aims to examine the evolutionary genetics of kdr mutations in relation to spatial population genetic structure of An. sinensis. Adults or larvae of Anopheles sinensis were collected from various geographic locations in China. DNA was extracted from individual mosquitoes. PCR amplification and DNA sequencing of the para-type sodium channel gene were conducted to analyse kdr allele frequency distribution, kdr codon upstream and downstream intron polymorphism, population genetic diversity and kdr codon evolution. The mitochondrial cytochrome c oxidase COI and COII genes were amplified and sequenced to examine population variations, genetic differentiation, spatial population structure, population expansion and gene flow patterns. Three non-synonymous mutations (L1014F, L1014C, and L1014S) were detected at the kdr codon L1014 of para-type sodium channel gene. A patchy distribution of kdr mutation allele frequencies from southern to central China was found. Near fixation of kdr mutation was detected in populations from central China, but no kdr mutations were found in populations from southwestern China. More than eight independent mutation events were detected in the three kdr alleles, and at least one of them evolved multiple times subsequent to their first divergence. Based on sequence analysis of the mitochondrial COI and COII genes, significant and large genetic differentiation was detected between populations from southwestern China and central China. The patchy distribution of kdr mutation frequencies is likely a consequence of geographic isolation in the mosquito populations and the long-term insecticide selection. Our results indicate multiple origins of the kdr insecticide-resistant alleles in An. sinensis from southern and central China. Local selection related to intense and prolonged use of insecticide for agricultural purposes, as well as frequent migrations among populations are likely the explanations for the patchy distribution of kdr mutations in China. On the contrary, the lack of kdr mutations in Yunnan and Sichuan is likely a consequence of genetic isolation and absence of strong selection pressure. The present study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Russia 1 1%
Unknown 93 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 20%
Researcher 17 18%
Student > Ph. D. Student 12 13%
Student > Bachelor 7 7%
Professor 4 4%
Other 11 12%
Unknown 24 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 38%
Biochemistry, Genetics and Molecular Biology 11 12%
Immunology and Microbiology 3 3%
Environmental Science 3 3%
Business, Management and Accounting 2 2%
Other 12 13%
Unknown 27 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2016.
All research outputs
#14,258,962
of 22,865,319 outputs
Outputs from Parasites & Vectors
#2,825
of 5,470 outputs
Outputs of similar age
#160,017
of 299,155 outputs
Outputs of similar age from Parasites & Vectors
#90
of 183 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,470 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,155 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.