↓ Skip to main content

A monoclonal natural human IgM protects axons in the absence of remyelination

Overview of attention for article published in Journal of Neuroinflammation, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A monoclonal natural human IgM protects axons in the absence of remyelination
Published in
Journal of Neuroinflammation, April 2016
DOI 10.1186/s12974-016-0561-3
Pubmed ID
Authors

Bharath Wootla, Aleksandar Denic, Arthur E. Warrington, Moses Rodriguez

Abstract

Whereas demyelination underlies early neurological symptoms in multiple sclerosis (MS), axonal damage is considered critical for permanent chronic deficits. Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic induced demyelinating disease (TMEV-IDD) with progressive axonal loss and neurologic dysfunction similar to progressive forms of MS. We previously reported that treatment of chronic TMEV-IDD mice with a neurite outgrowth-promoting natural human antibody, HIgM12, improved brainstem NAA concentrations and preserved functional motor activity. In order to translate this antibody toward clinical trial, we generated a fully human recombinant form of HIgM12, rHIgM12, determined the optimal in vivo dose for functional improvement in TMEV-IDD, and evaluated the functional preservation of descending spinal cord axons by retrograde labeling. SJL/J mice at 45 to 90 days post infection (dpi) were studied. A single intraperitoneal dose of 0.25 mg/kg of rHIgM12 per mouse is sufficient to preserve motor function in TMEV-IDD. The optimal dose was 10 mg/kg. rHIgM12 treatment protected the functional transport in spinal cord axons and led to 40 % more Fluoro-Gold-labeled brainstem neurons in retrograde transport studies. This suggests that axons are not only present but also functionally competent. rHIgM12-treated mice also contained more mid-thoracic (T6) spinal cord axons than controls. This study confirms that a fully human recombinant neurite outgrowth-promoting monoclonal IgM is therapeutic in a model of progressive MS using multiple reparative readouts. The minimum effective dose is similar to that of a remyelination-promoting monoclonal human IgM discovered by our group that is presently in clinical trials for MS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 21%
Researcher 6 21%
Student > Ph. D. Student 3 11%
Student > Bachelor 2 7%
Other 2 7%
Other 5 18%
Unknown 4 14%
Readers by discipline Count As %
Neuroscience 5 18%
Medicine and Dentistry 3 11%
Biochemistry, Genetics and Molecular Biology 3 11%
Agricultural and Biological Sciences 3 11%
Immunology and Microbiology 2 7%
Other 7 25%
Unknown 5 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2016.
All research outputs
#3,571,236
of 22,867,327 outputs
Outputs from Journal of Neuroinflammation
#731
of 2,643 outputs
Outputs of similar age
#56,779
of 299,116 outputs
Outputs of similar age from Journal of Neuroinflammation
#19
of 52 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,643 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,116 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.