↓ Skip to main content

Sodium nitrate decreases agrin-induced acetylcholine receptor clustering

Overview of attention for article published in BMC Pharmacology and Toxicology, May 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sodium nitrate decreases agrin-induced acetylcholine receptor clustering
Published in
BMC Pharmacology and Toxicology, May 2016
DOI 10.1186/s40360-016-0062-0
Pubmed ID
Authors

Jess Jarosz, Cullen White, Wade A. Grow

Abstract

Humans are exposed to nitrate predominantly through diet with peak plasma concentrations within an hour after ingestion, but additional exposure is obtained from the environment, and minimally through de novo synthesis. Higher nitrate consumption has been associated with methemoglobinemia, spontaneous abortions, atherosclerosis, myocardial ischemia, septic and distressed lung, inflammatory bowel disease, amyotrophic lateral sclerosis, and neural tube defects. However, skeletal muscle development has not been examined. C2C12 skeletal muscle cell cultures were maintained, myoblasts were fused into myotubes, and then cultures were exposed to motor neuron derived agrin to enhance acetylcholine receptor (AChR) clustering. Untreated cultures were compared with cultures exposed to sodium nitrate at concentrations ranging from 10 ng/mL-100 μg/mL. The results reported here demonstrate that 1 μg/mL sodium nitrate was sufficient to decrease the frequency of agrin-induced AChR clustering without affecting myotube formation. In addition, concentrations of sodium nitrate of 1 μg/mL or 100 μg/mL decreased gene expression of the myogenic transcription factor myogenin and AChR in correlation with the agrin-induced AChR clustering data. These results reveal that sodium nitrate decreases the frequency of agrin-induced AChR clustering by a mechanism that includes myogenin and AChR gene expression. As a consequence sodium nitrate may pose a risk for skeletal muscle development and subsequent neuromuscular synapse formation in humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 18%
Researcher 3 18%
Student > Ph. D. Student 2 12%
Student > Master 1 6%
Student > Doctoral Student 1 6%
Other 2 12%
Unknown 5 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 12%
Agricultural and Biological Sciences 2 12%
Neuroscience 2 12%
Medicine and Dentistry 2 12%
Other 1 6%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2017.
All research outputs
#6,053,255
of 23,881,329 outputs
Outputs from BMC Pharmacology and Toxicology
#103
of 450 outputs
Outputs of similar age
#82,933
of 300,649 outputs
Outputs of similar age from BMC Pharmacology and Toxicology
#2
of 5 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 450 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,649 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.