↓ Skip to main content

Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways

Overview of attention for article published in Genome Biology, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

blogs
3 blogs
twitter
13 X users

Citations

dimensions_citation
138 Dimensions

Readers on

mendeley
252 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways
Published in
Genome Biology, May 2016
DOI 10.1186/s13059-016-0939-7
Pubmed ID
Authors

Bethan Psaila, Nikolaos Barkas, Deena Iskander, Anindita Roy, Stacie Anderson, Neil Ashley, Valentina S. Caputo, Jens Lichtenberg, Sandra Loaiza, David M. Bodine, Anastasios Karadimitris, Adam J. Mead, Irene Roberts

Abstract

Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular heterogeneity within populations previously defined by "bulk" assays and to uncover rare cell types. In human hematopoiesis, megakaryocytes and erythroid cells differentiate from a shared precursor, the megakaryocyte-erythroid progenitor (MEP), which remains poorly defined. To clarify the cellular pathway in erythro-megakaryocyte differentiation, we correlate the surface immunophenotype, transcriptional profile, and differentiation potential of individual MEP cells. Highly purified, single MEP cells were analyzed using index fluorescence-activated cell sorting and parallel targeted transcriptional profiling of the same cells was performed using a specifically designed panel of genes. Differentiation potential was tested in novel, single-cell differentiation assays. Our results demonstrate that immunophenotypic MEP comprise three distinct subpopulations: "Pre-MEP," enriched for erythroid/megakaryocyte progenitors but with residual myeloid differentiation capacity; "E-MEP," strongly biased towards erythroid differentiation; and "MK-MEP," a previously undescribed, rare population of cells that are bipotent but primarily generate megakaryocytic progeny. Therefore, conventionally defined MEP are a mixed population, as a minority give rise to mixed-lineage colonies while the majority of cells are transcriptionally primed to generate exclusively single-lineage output. Our study clarifies the cellular hierarchy in human megakaryocyte/erythroid lineage commitment and highlights the importance of using a combination of single-cell approaches to dissect cellular heterogeneity and identify rare cell types within a population. We present a novel immunophenotyping strategy that enables the prospective identification of specific intermediate progenitor populations in erythro-megakaryopoiesis, allowing for in-depth study of disorders including inherited cytopenias, myeloproliferative disorders, and erythromegakaryocytic leukemias.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 252 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 <1%
Switzerland 1 <1%
Germany 1 <1%
Japan 1 <1%
United States 1 <1%
Unknown 246 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 71 28%
Researcher 47 19%
Student > Master 24 10%
Student > Bachelor 13 5%
Student > Doctoral Student 9 4%
Other 34 13%
Unknown 54 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 93 37%
Agricultural and Biological Sciences 37 15%
Medicine and Dentistry 24 10%
Immunology and Microbiology 12 5%
Computer Science 8 3%
Other 18 7%
Unknown 60 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2021.
All research outputs
#1,505,247
of 25,371,288 outputs
Outputs from Genome Biology
#1,205
of 4,467 outputs
Outputs of similar age
#24,796
of 312,394 outputs
Outputs of similar age from Genome Biology
#29
of 76 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,467 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,394 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.