↓ Skip to main content

Gitelman syndrome

Overview of attention for article published in Orphanet Journal of Rare Diseases, July 2008
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
4 blogs
twitter
3 X users
facebook
1 Facebook page
wikipedia
7 Wikipedia pages
googleplus
1 Google+ user

Citations

dimensions_citation
230 Dimensions

Readers on

mendeley
187 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gitelman syndrome
Published in
Orphanet Journal of Rare Diseases, July 2008
DOI 10.1186/1750-1172-3-22
Pubmed ID
Authors

Nine VAM Knoers, Elena N Levtchenko

Abstract

Gitelman syndrome (GS), also referred to as familial hypokalemia-hypomagnesemia, is characterized by hypokalemic metabolic alkalosis in combination with significant hypomagnesemia and low urinary calcium excretion. The prevalence is estimated at approximately 1:40,000 and accordingly, the prevalence of heterozygotes is approximately 1% in Caucasian populations, making it one of the most frequent inherited renal tubular disorders. In the majority of cases, symptoms do not appear before the age of six years and the disease is usually diagnosed during adolescence or adulthood. Transient periods of muscle weakness and tetany, sometimes accompanied by abdominal pain, vomiting and fever are often seen in GS patients. Paresthesias, especially in the face, frequently occur. Remarkably, some patients are completely asymptomatic except for the appearance at adult age of chondrocalcinosis that causes swelling, local heat, and tenderness over the affected joints. Blood pressure is lower than that in the general population. Sudden cardiac arrest has been reported occasionally. In general, growth is normal but can be delayed in those GS patients with severe hypokalemia and hypomagnesemia.GS is transmitted as an autosomal recessive trait. Mutations in the solute carrier family12, member 3 gene, SLC12A3, which encodes the thiazide-sensitive NaCl cotransporter (NCC), are found in the majority of GS patients. At present, more than 140 different NCC mutations throughout the whole protein have been identified. In a small minority of GS patients, mutations in the CLCNKB gene, encoding the chloride channel ClC-Kb have been identified.Diagnosis is based on the clinical symptoms and biochemical abnormalities (hypokalemia, metabolic alkalosis, hypomagnesemia and hypocalciuria). Bartter syndrome (especially type III) is the most important genetic disorder to consider in the differential diagnosis of GS. Genetic counseling is important. Antenatal diagnosis for GS is technically feasible but not advised because of the good prognosis in the majority of patients.Most asymptomatic patients with GS remain untreated and undergo ambulatory monitoring, once a year, generally by nephrologists. Lifelong supplementation of magnesium (magnesium-oxide and magnesium-sulfate) is recommended. Cardiac work-up should be offered to screen for risk factors of cardiac arrhythmias. All GS patients are encouraged to maintain a high-sodium and high potassium diet. In general, the long-term prognosis of GS is excellent.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 187 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 2 1%
Korea, Republic of 1 <1%
Spain 1 <1%
United States 1 <1%
Philippines 1 <1%
Unknown 181 97%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 26 14%
Other 21 11%
Researcher 18 10%
Student > Bachelor 18 10%
Student > Ph. D. Student 17 9%
Other 49 26%
Unknown 38 20%
Readers by discipline Count As %
Medicine and Dentistry 98 52%
Agricultural and Biological Sciences 11 6%
Nursing and Health Professions 8 4%
Biochemistry, Genetics and Molecular Biology 7 4%
Pharmacology, Toxicology and Pharmaceutical Science 3 2%
Other 15 8%
Unknown 45 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2022.
All research outputs
#1,000,440
of 23,660,057 outputs
Outputs from Orphanet Journal of Rare Diseases
#94
of 2,732 outputs
Outputs of similar age
#2,120
of 83,236 outputs
Outputs of similar age from Orphanet Journal of Rare Diseases
#1
of 7 outputs
Altmetric has tracked 23,660,057 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,732 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 83,236 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them