↓ Skip to main content

Exploring miRNAs involved in blue/UV-A light response in Brassica rapa reveals special regulatory mode during seedling development

Overview of attention for article published in BMC Plant Biology, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring miRNAs involved in blue/UV-A light response in Brassica rapa reveals special regulatory mode during seedling development
Published in
BMC Plant Biology, May 2016
DOI 10.1186/s12870-016-0799-z
Pubmed ID
Authors

Bo Zhou, Pengzhen Fan, Yuhua Li, Haifang Yan, Qijiang Xu

Abstract

Growth, development, and pigment synthesis in Brassica rapa subsp. rapa cv. Tsuda, a popular vegetable crop, are influenced by light. Although microRNAs (miRNAs) have vital roles in the metabolic processes and abiotic stress responses of plants, whether miRNAs play a role in anthocyanin biosynthesis and development of Tsuda seedlings exposed to light is unknown. Seventeen conserved and 226 novel miRNAs differed at least 2-fold in response to blue and UV-A light compared with levels after a dark treatment. Real time PCR showed that BrmiR159, BrmiRC0191, BrmiRC0460, BrmiRC0323, BrmiRC0418, BrmiRC0005 were blue light-induced and northern blot revealed that the transcription level of BrmiR167 did not differ significantly among seedlings treated with dark, blue or UV-light. BrmiR156 and BrmiR157 were present in the greatest amount (number of reads) and among their 8 putative targets in the SPL gene family, only SPL9 (Bra004674) and SPL15 (Bra003305) increased in expression after blue or UV-A exposure. In addition, miR157-guided cleavage of target SPL9 mRNAs (Bra004674, Bra016891) and SPL15 mRNAs (Bra003305, Bra014599) took place 10 or 11 bases from the 5' ends of the binding region in the miR157 sequence. A set of miRNAs and their targets involved in the regulation of the light-induced photomorphogenic phenotype in seedlings of Brassica rapa was identified, providing new insights into blue and UV-A light-responsive miRNAs in seedlings of Tsuda and evidence of multiple targets for the miRNAs and their diverse roles in plant development.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 29%
Student > Ph. D. Student 5 16%
Student > Bachelor 3 10%
Professor > Associate Professor 3 10%
Professor 2 6%
Other 4 13%
Unknown 5 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 52%
Biochemistry, Genetics and Molecular Biology 5 16%
Unspecified 1 3%
Chemistry 1 3%
Unknown 8 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2016.
All research outputs
#19,017,658
of 23,577,654 outputs
Outputs from BMC Plant Biology
#2,144
of 3,320 outputs
Outputs of similar age
#226,521
of 306,744 outputs
Outputs of similar age from BMC Plant Biology
#38
of 57 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,320 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,744 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.