↓ Skip to main content

Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia

Overview of attention for article published in Journal of Neuroinflammation, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia
Published in
Journal of Neuroinflammation, May 2016
DOI 10.1186/s12974-016-0569-8
Pubmed ID
Authors

Lekshmy Srinivas, Neetha N. Vellichirammal, Ann Mary Alex, Chandrasekharan Nair, Indu V. Nair, Moinak Banerjee

Abstract

In schizophrenia, genetic background may provide a substrate for intrinsic maldevelopment of the brain through environmental influences, by recruiting neurotrophic factors and cytokines, to trigger the changes that lead to impaired neuronal functions. Cytokines being the key regulators of immune/inflammatory reactions are also known to influence the dopaminergic, noradrenergic, and serotonergic neurotransmission. Therefore, functional polymorphisms in cytokine genes may result in imbalances in the pro- and anti-inflammatory cytokine production. We screened polymorphisms in pro- and anti-inflammatory cytokine genes using a case-control association study in a South Indian population. The role of allele, genotype, haplotype, and diplotypes of these cytokine genes and their epistatic interactions were assessed in contributing to the risk of developing schizophrenia. Meta-analysis for the reported associations was also monitored for global significance. The pro-inflammatory cytokine gene polymorphisms in IL1Ars1800587, IL6rs1800796, TNFArs361525, and IFNGrs2069718 were associated with schizophrenia. The study also provides significant evidence for strong epistatic interactions among pro-inflammatory cytokine genes IL6 and IFNG in the development of schizophrenia. In silico analysis suggested that associated risk variants were indicative of altered transcriptional activity with higher production of IL1α, IL-6, TNF-α, and IFN-ɤ cytokines. Meta-analysis indicated heterogeneity among study population while IL1Ars1800587 was found to be globally significant. It is important to identify the nature of inflammatory response that can be amplified by the environment, to influence either Th1 response or Th2 response. The associated functional variants in the study are involved with increased expression resulting in higher production of the pro-inflammatory cytokines IL-1α, IL-6, TNF-α, and IFN-γ. The interaction of immunological stressors with these high producer alleles of pro-inflammatory cytokines may suggest that even a lower threshold may be sufficient to induce a resultant chronic effect on the psycho-social and environmental stressors that may result in the development and pathogenesis of schizophrenia. Understanding environmental factors that influence the expression of these pro-inflammatory cytokine genes or their interaction can possibly help in dissecting the phenotypic variation and therapeutic response to antipsychotics in schizophrenia.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 16%
Student > Bachelor 7 12%
Researcher 6 10%
Student > Master 6 10%
Lecturer 3 5%
Other 9 16%
Unknown 18 31%
Readers by discipline Count As %
Neuroscience 10 17%
Medicine and Dentistry 10 17%
Agricultural and Biological Sciences 6 10%
Biochemistry, Genetics and Molecular Biology 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 6 10%
Unknown 19 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 May 2016.
All research outputs
#20,880,816
of 25,654,806 outputs
Outputs from Journal of Neuroinflammation
#2,383
of 2,969 outputs
Outputs of similar age
#246,592
of 328,007 outputs
Outputs of similar age from Journal of Neuroinflammation
#62
of 77 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,969 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,007 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.