↓ Skip to main content

Osteoblastic differentiation of bone marrow mesenchymal stromal cells in Bruck Syndrome

Overview of attention for article published in BMC Medical Genomics, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Osteoblastic differentiation of bone marrow mesenchymal stromal cells in Bruck Syndrome
Published in
BMC Medical Genomics, May 2016
DOI 10.1186/s12881-016-0301-7
Pubmed ID
Authors

Carla M. Kaneto, Patrícia S. P. Lima, Dalila Lucíola Zanette, Thiago Yukio Kikuchi Oliveira, Francisco de Assis Pereira, Julio Cesar Cetrulo Lorenzi, Jane Lima dos Santos, Karen L. Prata, João M. Pina Neto, Francisco J. A. de Paula, Wilson A. Silva

Abstract

Osteogenesis Imperfecta (OI) (OMIM %259450) is a heterogeneous group of inherited disorders characterized by increased bone fragility, with clinical severity ranging from mild to lethal. The majority of OI cases are caused by mutations in COL1A1 or COL1A2. Bruck Syndrome (BS) is a further recessively-inherited OI-like phenotype in which bone fragility is associated with the unusual finding of pterygia and contractures of the large joints. Notably, several studies have failed to show any abnormalities in the biosynthesis of collagen 1 in BS patientes. Evidence was obtained for a specific defect of the procollagen telopeptide lysine hydroxylation in BS, whereas mutations in the gene PLOD2 have been identified. Recently, several studies described FKBP10 mutations in OI-like and BS patients, suggesting that FKBP10 is a bonafide BS locus. We analyzed the coding region and intron/exon boundaries of COL1A1, COL1A2, PLOD2 and FKBP10 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. Mononuclear cells obtained from the bone marrow of BS, OI patients and healthy donors were cultured and osteogenic differentiation was induced. The gene expression of osteoblast specific markers were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. No mutations in COL1A1, COL1A2 or PLOD2 were found in BS patient. We found a homozygous 1-base-pair duplication (c.831dupC) that is predicted to produce a translational frameshift mutation and a premature protein truncation 17 aminoacids downstream (p.Gly278ArgfsX95). The gene expression of osteoblast specific markers BGLAP, COL1A1, MSX2, SPARC and VDR was evaluated by Real Time RT-PCR during differentiation into osteoblasts and results showed similar patterns of osteoblast markers expression in BS and healthy controls. On the other hand, when compared with OI patients, the expression pattern of these genes was found to be different. Our work suggests that the gene expression profiles observed during mesenchymal stromal cell differentiation into osteoblast are distinct in BS patients as compared to OI patients. The present study shows for the first time that genes involved in osteogenesis are differentially expressed in BS and OI patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Bachelor 5 15%
Student > Master 5 15%
Researcher 4 12%
Professor > Associate Professor 4 12%
Other 5 15%
Unknown 2 6%
Readers by discipline Count As %
Medicine and Dentistry 10 29%
Biochemistry, Genetics and Molecular Biology 8 24%
Agricultural and Biological Sciences 3 9%
Engineering 3 9%
Psychology 1 3%
Other 3 9%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2016.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from BMC Medical Genomics
#2,010
of 2,444 outputs
Outputs of similar age
#269,752
of 312,451 outputs
Outputs of similar age from BMC Medical Genomics
#24
of 30 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,444 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,451 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.