↓ Skip to main content

Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis

Overview of attention for article published in BMC Ecology and Evolution, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
facebook
1 Facebook page
f1000
1 research highlight platform

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
112 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis
Published in
BMC Ecology and Evolution, May 2016
DOI 10.1186/s12862-016-0683-3
Pubmed ID
Authors

Leslie S. Babonis, Mark Q. Martindale, Joseph F. Ryan

Abstract

The evolution of novel genes is thought to be a critical component of morphological innovation but few studies have explicitly examined the contribution of novel genes to the evolution of novel tissues. Nematosomes, the free-floating cellular masses that circulate through the body cavity of the sea anemone Nematostella vectensis, are the defining apomorphy of the genus Nematostella and are a useful model for understanding the evolution of novel tissues. Although many hypotheses have been proposed, the function of nematosomes is unknown. To gain insight into their putative function and to test hypotheses about the role of lineage-specific genes in the evolution of novel structures, we have re-examined the cellular and molecular biology of nematosomes. Using behavioral assays, we demonstrate that nematosomes are capable of immobilizing live brine shrimp (Artemia salina) by discharging their abundant cnidocytes. Additionally, the ability of nematosomes to engulf fluorescently labeled bacteria (E. coli) reveals the presence of phagocytes in this tissue. Using RNA-Seq, we show that the gene expression profile of nematosomes is distinct from that of the tentacles and the mesenteries (their tissue of origin) and, further, that nematosomes (a Nematostella-specific tissue) are enriched in Nematostella-specific genes. Despite the small number of cell types they contain, nematosomes are distinct among tissues, both functionally and molecularly. We provide the first evidence that nematosomes comprise part of the innate immune system in N. vectensis, and suggest that this tissue is potentially an important place to look for genes associated with pathogen stress. Finally, we demonstrate that Nematostella-specific genes comprise a significant proportion of the differentially expressed genes in all three of the tissues we examined and may play an important role in novel cell functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 112 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 24%
Student > Master 18 16%
Student > Bachelor 16 14%
Researcher 11 10%
Student > Doctoral Student 9 8%
Other 12 11%
Unknown 19 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 41 37%
Biochemistry, Genetics and Molecular Biology 37 33%
Environmental Science 4 4%
Immunology and Microbiology 2 2%
Earth and Planetary Sciences 2 2%
Other 2 2%
Unknown 24 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2017.
All research outputs
#3,379,851
of 25,373,627 outputs
Outputs from BMC Ecology and Evolution
#906
of 3,714 outputs
Outputs of similar age
#56,067
of 348,587 outputs
Outputs of similar age from BMC Ecology and Evolution
#20
of 82 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,587 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.