↓ Skip to main content

Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury

Overview of attention for article published in Epigenetics & Chromatin, June 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#5 of 594)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
9 news outlets
blogs
2 blogs
twitter
14 X users
facebook
1 Facebook page

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury
Published in
Epigenetics & Chromatin, June 2016
DOI 10.1186/s13072-016-0073-5
Pubmed ID
Authors

Melissa T. Manners, Adam Ertel, Yuzhen Tian, Seena K. Ajit

Abstract

Methyl-CpG-binding protein 2 (MeCP2), a protein with affinity for methylated cytosines, is crucial for neuronal development and function. MeCP2 regulates gene expression through activation, repression and chromatin remodeling. Mutations in MeCP2 cause Rett syndrome, and these patients display impaired nociception. We observed an increase in MeCP2 expression in mouse dorsal root ganglia (DRG) after peripheral nerve injury. The functional implication of increased MeCP2 is largely unknown. To identify regions of the genome bound by MeCP2 in the DRG and the changes induced by nerve injury, a chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) was performed 4 weeks after spared nerve injury (SNI). While the number of binding sites across the genome remained similar in the SNI model and sham control, SNI induced the redistribution of MeCP2 to transcriptionally relevant regions. To determine how differential binding of MeCP2 can affect gene expression in the DRG, we investigated mmu-miR-126, a microRNA locus that had enriched MeCP2 binding in the SNI model. Enriched MeCP2 binding to miR-126 locus after nerve injury repressed miR-126 expression, and this was not mediated by alterations in methylation pattern at the miR-126 locus. Downregulation of miR-126 resulted in the upregulation of its two target genes Dnmt1 and Vegfa in Neuro 2A cells and in SNI model compared to control. These target genes were significantly downregulated in Mecp2-null mice compared to wild-type littermates, indicating a regulatory role for MeCP2 in activating Dnmt1 and Vegfa expression. Intrathecal delivery of miR-126 was not sufficient to reverse nerve injury-induced mechanical and thermal hypersensitivity, but decreased Dnmt1 and Vegfa expression in the DRG. Our study shows a regulatory role for MeCP2 in that changes in global redistribution can result in direct and indirect modulation of gene expression in the DRG. Alterations in genome-wide binding of MeCP2 therefore provide a molecular basis for a better understanding of epigenetic regulation-induced molecular changes underlying nerve injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Ph. D. Student 6 19%
Professor > Associate Professor 4 13%
Student > Master 3 10%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 8 26%
Readers by discipline Count As %
Neuroscience 10 32%
Medicine and Dentistry 4 13%
Agricultural and Biological Sciences 2 6%
Environmental Science 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 4 13%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 85. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2016.
All research outputs
#476,296
of 24,503,376 outputs
Outputs from Epigenetics & Chromatin
#5
of 594 outputs
Outputs of similar age
#9,692
of 347,591 outputs
Outputs of similar age from Epigenetics & Chromatin
#2
of 16 outputs
Altmetric has tracked 24,503,376 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 594 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.6. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,591 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.