↓ Skip to main content

On pairwise distances and median score of three genomes under DCJ

Overview of attention for article published in BMC Bioinformatics, December 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On pairwise distances and median score of three genomes under DCJ
Published in
BMC Bioinformatics, December 2012
DOI 10.1186/1471-2105-13-s19-s1
Pubmed ID
Authors

Sergey Aganezov, Max A Alekseyev

Abstract

In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score.In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest.We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 17%
France 1 17%
Unknown 4 67%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 50%
Student > Ph. D. Student 2 33%
Professor > Associate Professor 1 17%
Student > Master 1 17%
Readers by discipline Count As %
Computer Science 4 67%
Biochemistry, Genetics and Molecular Biology 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2012.
All research outputs
#20,163,398
of 22,673,450 outputs
Outputs from BMC Bioinformatics
#6,820
of 7,247 outputs
Outputs of similar age
#248,430
of 280,069 outputs
Outputs of similar age from BMC Bioinformatics
#130
of 137 outputs
Altmetric has tracked 22,673,450 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,247 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,069 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 137 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.