↓ Skip to main content

Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat

Overview of attention for article published in BMC Genomic Data, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat
Published in
BMC Genomic Data, June 2016
DOI 10.1186/s12863-016-0391-4
Pubmed ID
Authors

Chuanzhi Zhao, Xindi Lv, Yinghui Li, Feng Li, Miaomiao Geng, Yangyang Mi, Zhongfu Ni, Xingjun Wang, Chaojie Xie, Qixin Sun

Abstract

The 6AL/6VS translocation lines, carrying the wheat powdery mildew resistance gene Pm21, are planted on more than 3.4 million hectares. The NAM-A1 gene, located on chromosome 6AS of hexaploid wheat, has been implicated with increased wheat grain protein content (GPC). However, the NAM-A1 gene was removed from the 6AL/6VS translocation lines after the original chromosome 6AS was replaced by chromosome 6VS of Haynaldia villosa. The present study aimed to clone the NAM homologous gene from chromosome 6VS, to analyze the changes of GPC in the 6AL/6VS translocation lines, and to develop related molecular markers for wheat molecular breeding. A new NAM family gene, NAM-V1, was cloned from 6VS of H. villosa (GenBank ACC. no. KR873101). NAM-V1 contained an intact open reading frame (ORF) and putatively encodes a protein of 407 amino acids. Phylogenetic analysis indicated that NAM-V1 was an orthologous gene of NAM-A1, B1, and D1. The determination of GPC in four Pm21 F2 segregation populations demonstrated that the replacement of NAM-A1 by NAM-V1 confers increased GPC in hexaploid wheat. Multiple sequence alignment of NAM-A1, B1, B2, D1, D2, and V1 showed the single nucleotide polymorphism (SNP) sites for each of the NAM genes, allowing us to develop a molecular marker, CauNAM-V1, for the specific detection of NAM-V1 gene. Our results indicate that CauNAM-V1 can be used as a novel DNA marker for NAM-V1, and can also be used for selecting Pm21 in wheat breeding programs. Further, we developed a marker, CauNAM-ABD, for the amplification and simultaneously distinguish among the NAM-A1, NAM-B1, NAM-B2, NAM-D1, and NAM-D2 genes in a single step. CauNAM-ABD enabled us to develop an efficient "one-marker-for-five-genes" procedure for identifying genes and its copy numbers related with grain protein content. Here, we report the isolation of the NAM-V1 gene of H. villosa. This gene contributes to increasing GPC in 6AL/6VS translocation wheat lines. We developed a molecular marker for the specific detection of NAM-V1 and a molecular marker that can be used to simultaneously distinguished among the NAM-A1, NAM-B1, NAM-B2, NAM-D1, and NAM-D2 genes in a single step.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 19%
Student > Doctoral Student 2 13%
Researcher 2 13%
Professor 1 6%
Student > Bachelor 1 6%
Other 2 13%
Unknown 5 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 31%
Biochemistry, Genetics and Molecular Biology 5 31%
Environmental Science 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2017.
All research outputs
#16,721,717
of 25,374,647 outputs
Outputs from BMC Genomic Data
#605
of 1,204 outputs
Outputs of similar age
#227,151
of 368,454 outputs
Outputs of similar age from BMC Genomic Data
#17
of 46 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,454 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.