↓ Skip to main content

Large scale biomedical texts classification: a kNN and an ESA-based approaches

Overview of attention for article published in Journal of Biomedical Semantics, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Large scale biomedical texts classification: a kNN and an ESA-based approaches
Published in
Journal of Biomedical Semantics, June 2016
DOI 10.1186/s13326-016-0073-1
Pubmed ID
Authors

Khadim Dramé, Fleur Mougin, Gayo Diallo

Abstract

With the large and increasing volume of textual data, automated methods for identifying significant topics to classify textual documents have received a growing interest. While many efforts have been made in this direction, it still remains a real challenge. Moreover, the issue is even more complex as full texts are not always freely available. Then, using only partial information to annotate these documents is promising but remains a very ambitious issue. We propose two classification methods: a k-nearest neighbours (kNN)-based approach and an explicit semantic analysis (ESA)-based approach. Although the kNN-based approach is widely used in text classification, it needs to be improved to perform well in this specific classification problem which deals with partial information. Compared to existing kNN-based methods, our method uses classical Machine Learning (ML) algorithms for ranking the labels. Additional features are also investigated in order to improve the classifiers' performance. In addition, the combination of several learning algorithms with various techniques for fixing the number of relevant topics is performed. On the other hand, ESA seems promising for this classification task as it yielded interesting results in related issues, such as semantic relatedness computation between texts and text classification. Unlike existing works, which use ESA for enriching the bag-of-words approach with additional knowledge-based features, our ESA-based method builds a standalone classifier. Furthermore, we investigate if the results of this method could be useful as a complementary feature of our kNN-based approach. Experimental evaluations performed on large standard annotated datasets, provided by the BioASQ organizers, show that the kNN-based method with the Random Forest learning algorithm achieves good performances compared with the current state-of-the-art methods, reaching a competitive f-measure of 0.55 % while the ESA-based approach surprisingly yielded unsatisfactory results. We have proposed simple classification methods suitable to annotate textual documents using only partial information. They are therefore adequate for large multi-label classification and particularly in the biomedical domain. Thus, our work contributes to the extraction of relevant information from unstructured documents in order to facilitate their automated processing. Consequently, it could be used for various purposes, including document indexing, information retrieval, etc.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 2%
United States 1 2%
Unknown 56 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 19%
Researcher 8 14%
Student > Bachelor 6 10%
Student > Doctoral Student 6 10%
Student > Postgraduate 4 7%
Other 11 19%
Unknown 12 21%
Readers by discipline Count As %
Computer Science 20 34%
Medicine and Dentistry 6 10%
Biochemistry, Genetics and Molecular Biology 4 7%
Engineering 4 7%
Agricultural and Biological Sciences 4 7%
Other 6 10%
Unknown 14 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2017.
All research outputs
#14,855,186
of 22,877,793 outputs
Outputs from Journal of Biomedical Semantics
#225
of 364 outputs
Outputs of similar age
#197,462
of 326,206 outputs
Outputs of similar age from Journal of Biomedical Semantics
#14
of 21 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 364 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,206 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.