↓ Skip to main content

Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation

Overview of attention for article published in Journal of Translational Medicine, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
99 Dimensions

Readers on

mendeley
147 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation
Published in
Journal of Translational Medicine, June 2016
DOI 10.1186/s12967-016-0927-4
Pubmed ID
Authors

Cecilia Lässer, Serena E. O’Neil, Ganesh V. Shelke, Carina Sihlbom, Sara F. Hansson, Yong Song Gho, Bo Lundbäck, Jan Lötvall

Abstract

Exosomes are nano-sized extracellular vesicles participating in cell-to-cell communication both in health and disease. However, the knowledge about the functions and molecular composition of exosomes in the upper airways is limited. The aim of the current study was therefore to determine whether nasal exosomes can influence inflammatory cells and to establish the proteome of nasal lavage fluid-derived exosomes in healthy subjects, as well as its alterations in individuals with chronic airway inflammatory diseases [asthma and chronic rhinosinusitis (CRS)]. Nasal lavage fluid was collected from 14 healthy subjects, 15 subjects with asthma and 13 subjects with asthma/CRS. Exosomes were isolated with differential centrifugation and the proteome was analysed by LC-MS/MS with the application of two exclusion lists as well as using quantitative proteomics. Ingenuity Pathways Analysis and GO Term finder was used to predict the functions associated with the exosomal proteome and a migration assay was used to analyse the effect on immune cells by nasal exosomes. Firstly, we demonstrate that nasal exosomes can induce migration of several immune cells, such as monocytes, neutrophils and NK cells in vitro. Secondly, a mass spectrometry approach, with the application of exclusion lists, was utilised to generate a comprehensive protein inventory of the exosomes from healthy subjects. The use of exclusion lists resulted in the identification of ~15 % additional proteins, and increased the confidence in ~20 % of identified proteins. In total, 604 proteins were identified in nasal exosomes and the nasal exosomal proteome showed strong associations with immune-related functions, such as immune cell trafficking. Thirdly, a quantitative proteomics approach was used to determine alterations in the exosome proteome as a result of airway inflammatory disease. Serum-associated proteins and mucins were more abundant in the exosomes from subjects with respiratory diseases compared to healthy controls while proteins with antimicrobial functions and barrier-related proteins had decreased expression. Nasal exosomes were shown to induce the migration of innate immune cells, which may be important as the airway epithelium is the first line of defence against pathogens and allergens. The decreased expression in barrier and antimicrobial exosomal proteins in subjects with airway diseases, could possibly contribute to an increased susceptibility to infections, which have important clinical implications in disease progression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 147 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 <1%
Unknown 146 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 18%
Researcher 21 14%
Student > Bachelor 21 14%
Student > Master 14 10%
Student > Doctoral Student 11 7%
Other 27 18%
Unknown 26 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 39 27%
Medicine and Dentistry 29 20%
Agricultural and Biological Sciences 15 10%
Immunology and Microbiology 8 5%
Chemistry 5 3%
Other 20 14%
Unknown 31 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 June 2016.
All research outputs
#14,855,186
of 22,879,161 outputs
Outputs from Journal of Translational Medicine
#1,977
of 4,004 outputs
Outputs of similar age
#213,593
of 353,751 outputs
Outputs of similar age from Journal of Translational Medicine
#56
of 110 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,004 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,751 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 110 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.