↓ Skip to main content

Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells

Overview of attention for article published in Epigenetics & Chromatin, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
16 X users
patent
1 patent

Citations

dimensions_citation
105 Dimensions

Readers on

mendeley
198 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells
Published in
Epigenetics & Chromatin, June 2016
DOI 10.1186/s13072-016-0072-6
Pubmed ID
Authors

Lacey J. Luense, Xiaoshi Wang, Samantha B. Schon, Angela H. Weller, Enrique Lin Shiao, Jessica M. Bryant, Marisa S. Bartolomei, Christos Coutifaris, Benjamin A. Garcia, Shelley L. Berger

Abstract

During the process of spermatogenesis, male germ cells undergo dramatic chromatin reorganization, whereby most histones are replaced by protamines, as part of the pathway to compact the genome into the small nuclear volume of the sperm head. Remarkably, approximately 90 % (human) to 95 % (mouse) of histones are evicted during the process. An intriguing hypothesis is that post-translational modifications (PTMs) decorating histones play a critical role in epigenetic regulation of spermatogenesis and embryonic development following fertilization. Although a number of specific histone PTMs have been individually studied during spermatogenesis and in mature mouse and human sperm, to date, there is a paucity of comprehensive identification of histone PTMs and their dynamics during this process. Here we report systematic investigation of sperm histone PTMs and their dynamics during spermatogenesis. We utilized "bottom-up" nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) to identify histone PTMs and to determine their relative abundance in distinct stages of mouse spermatogenesis (meiotic, round spermatids, elongating/condensing spermatids, and mature sperm) and in human sperm. We detected peptides and histone PTMs from all four canonical histones (H2A, H2B, H3, and H4), the linker histone H1, and multiple histone isoforms of H1, H2A, H2B, and H3 in cells from all stages of mouse spermatogenesis and in mouse sperm. We found strong conservation of histone PTMs for histone H3 and H4 between mouse and human sperm; however, little conservation was observed between H1, H2A, and H2B. Importantly, across eight individual normozoospermic human semen samples, little variation was observed in the relative abundance of nearly all histone PTMs. In summary, we report the first comprehensive and unbiased analysis of histone PTMs at multiple time points during mouse spermatogenesis and in mature mouse and human sperm. Furthermore, our results suggest a largely uniform histone PTM signature in sperm from individual humans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 198 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
India 1 <1%
Germany 1 <1%
Unknown 195 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 46 23%
Student > Postgraduate 30 15%
Student > Bachelor 27 14%
Researcher 24 12%
Student > Master 16 8%
Other 26 13%
Unknown 29 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 86 43%
Agricultural and Biological Sciences 50 25%
Medicine and Dentistry 10 5%
Chemistry 5 3%
Immunology and Microbiology 3 2%
Other 13 7%
Unknown 31 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2022.
All research outputs
#2,627,902
of 23,341,064 outputs
Outputs from Epigenetics & Chromatin
#84
of 572 outputs
Outputs of similar age
#48,223
of 354,815 outputs
Outputs of similar age from Epigenetics & Chromatin
#5
of 17 outputs
Altmetric has tracked 23,341,064 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 572 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,815 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.