↓ Skip to main content

Genomic insights into head and neck cancer

Overview of attention for article published in Cancers of the Head & Neck, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
102 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic insights into head and neck cancer
Published in
Cancers of the Head & Neck, June 2016
DOI 10.1186/s41199-016-0003-z
Pubmed ID
Authors

Tim N. Beck, Erica A. Golemis

Abstract

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 2 2%
Sweden 1 <1%
Unknown 99 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 17%
Researcher 14 14%
Student > Bachelor 13 13%
Student > Master 13 13%
Student > Postgraduate 7 7%
Other 14 14%
Unknown 24 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 35 34%
Medicine and Dentistry 22 22%
Agricultural and Biological Sciences 5 5%
Immunology and Microbiology 4 4%
Computer Science 3 3%
Other 9 9%
Unknown 24 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2021.
All research outputs
#2,784,015
of 22,879,161 outputs
Outputs from Cancers of the Head & Neck
#2
of 31 outputs
Outputs of similar age
#50,742
of 339,345 outputs
Outputs of similar age from Cancers of the Head & Neck
#1
of 7 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 31 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one scored the same or higher as 29 of them.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,345 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them