↓ Skip to main content

Detection of tumor-associated cells in cryopreserved peripheral blood mononuclear cell samples for retrospective analysis

Overview of attention for article published in Journal of Translational Medicine, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detection of tumor-associated cells in cryopreserved peripheral blood mononuclear cell samples for retrospective analysis
Published in
Journal of Translational Medicine, July 2016
DOI 10.1186/s12967-016-0953-2
Pubmed ID
Authors

Peixuan Zhu, Melissa L. Stanton, Erik P. Castle, Richard W. Joseph, Daniel L. Adams, Shuhong Li, Platte Amstutz, Cha-Mei Tang, Thai H. Ho

Abstract

Cryopreserved peripheral blood mononuclear cells (PBMCs) are commonly collected in biobanks. However, little data exist regarding the preservation of tumor-associated cells in cryopreserved collections. The objective of this study was to determine the feasibility of using the CellSieve™ microfiltration assay for the isolation of circulating tumor cells (CTCs) and circulating cancer-associated macrophage-like cells (CAMLs) from cryopreserved PBMC samples. Blood samples spiked with breast (MCF-7), prostate (PC-3), and renal (786-O) cancer cell lines were used to establish analytical accuracy, efficiency, and reproducibility after cryopreservation. The spiked samples were processed through Ficoll separation, and cryopreservation was followed by thawing and microfiltration. MCF-7 cells were successfully retrieved with recovery efficiencies of 90.5 % without cryopreservation and 87.8 and 89.0 %, respectively, on day 7 and day 66 following cryopreservation. The corresponding recovery efficiencies of PC-3 cells were 83.3 % without cryopreservation and 85.3 and 84.7 %, respectively, after cryopreservation. Recovery efficiencies of 786-O cells were 92.7 % without cryopreservation, and 82.7 and 81.3 %, respectively, after cryopreservation. The recovered cells retained the morphologic characteristics and immunohistochemical markers that had been observed before freezing. The protocols were further validated by quantitation of CAMLs in blood samples from two patients with renal cell carcinoma (RCC). The recovery rates of CTCs and CAMLs from cryopreserved samples were not statistically significant different (P > 0.05) from matched fresh samples. To our knowledge, this is the first report that CAMLs could be cryopreserved and analyzed after thawing with microfiltration technology. The application of microfiltration technology to cryopreserved samples will enable much greater retrospective study of cancer patients in relation to long-term outcomes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 28%
Student > Ph. D. Student 7 22%
Student > Master 4 13%
Student > Bachelor 3 9%
Lecturer > Senior Lecturer 1 3%
Other 1 3%
Unknown 7 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 31%
Agricultural and Biological Sciences 5 16%
Medicine and Dentistry 4 13%
Engineering 2 6%
Immunology and Microbiology 2 6%
Other 3 9%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2016.
All research outputs
#14,856,861
of 22,880,230 outputs
Outputs from Journal of Translational Medicine
#1,977
of 4,004 outputs
Outputs of similar age
#212,120
of 350,781 outputs
Outputs of similar age from Journal of Translational Medicine
#53
of 99 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,004 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,781 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.