↓ Skip to main content

Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes

Overview of attention for article published in Trials, July 2016
Altmetric Badge

Mentioned by

twitter
12 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes
Published in
Trials, July 2016
DOI 10.1186/s13063-016-1382-5
Pubmed ID
Authors

Daniel J. Bratton, Mahesh K. B. Parmar, Patrick P. J. Phillips, Babak Choodari-Oskooei

Abstract

The multi-arm multi-stage (MAMS) design described by Royston et al. [Stat Med. 2003;22(14):2239-56 and Trials. 2011;12:81] can accelerate treatment evaluation by comparing multiple treatments with a control in a single trial and stopping recruitment to arms not showing sufficient promise during the course of the study. To increase efficiency further, interim assessments can be based on an intermediate outcome (I) that is observed earlier than the definitive outcome (D) of the study. Two measures of type I error rate are often of interest in a MAMS trial. Pairwise type I error rate (PWER) is the probability of recommending an ineffective treatment at the end of the study regardless of other experimental arms in the trial. Familywise type I error rate (FWER) is the probability of recommending at least one ineffective treatment and is often of greater interest in a study with more than one experimental arm. We demonstrate how to calculate the PWER and FWER when the I and D outcomes in a MAMS design differ. We explore how each measure varies with respect to the underlying treatment effect on I and show how to control the type I error rate under any scenario. We conclude by applying the methods to estimate the maximum type I error rate of an ongoing MAMS study and show how the design might have looked had it controlled the FWER under any scenario. The PWER and FWER converge to their maximum values as the effectiveness of the experimental arms on I increases. We show that both measures can be controlled under any scenario by setting the pairwise significance level in the final stage of the study to the target level. In an example, controlling the FWER is shown to increase considerably the size of the trial although it remains substantially more efficient than evaluating each new treatment in separate trials. The proposed methods allow the PWER and FWER to be controlled in various MAMS designs, potentially increasing the uptake of the MAMS design in practice. The methods are also applicable in cases where the I and D outcomes are identical.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 29%
Student > Ph. D. Student 6 21%
Other 3 11%
Student > Master 3 11%
Student > Bachelor 2 7%
Other 3 11%
Unknown 3 11%
Readers by discipline Count As %
Medicine and Dentistry 8 29%
Mathematics 5 18%
Nursing and Health Professions 2 7%
Agricultural and Biological Sciences 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 6 21%
Unknown 4 14%