↓ Skip to main content

Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
16 X users
facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
71 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron
Published in
Critical Reviews in Diagnostic Imaging, July 2016
DOI 10.1186/s12968-016-0259-9
Pubmed ID
Authors

Mohammed H. Alam, Dominique Auger, Laura-Ann McGill, Gillian C. Smith, Taigang He, Cemil Izgi, A. John Baksi, Rick Wage, Peter Drivas, David N. Firmin, Dudley J. Pennell

Abstract

T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T. A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*. Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007). Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 24%
Student > Ph. D. Student 12 17%
Student > Master 7 10%
Student > Postgraduate 6 8%
Other 4 6%
Other 14 20%
Unknown 11 15%
Readers by discipline Count As %
Medicine and Dentistry 33 46%
Engineering 10 14%
Neuroscience 4 6%
Physics and Astronomy 4 6%
Computer Science 2 3%
Other 6 8%
Unknown 12 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2018.
All research outputs
#4,171,008
of 25,522,520 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#250
of 1,379 outputs
Outputs of similar age
#69,224
of 371,028 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#4
of 19 outputs
Altmetric has tracked 25,522,520 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,379 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 371,028 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.