↓ Skip to main content

Comparative study of Cronobacter identification according to phenotyping methods

Overview of attention for article published in BMC Microbiology, July 2016
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative study of Cronobacter identification according to phenotyping methods
Published in
BMC Microbiology, July 2016
DOI 10.1186/s12866-016-0768-6
Pubmed ID
Authors

Emily E. Jackson, Stephen J. Forsythe

Abstract

Microbiological criteria applied to powdered infant formula (PIF) require the absence of all Cronobacter spp. Consequently, misidentification of isolates from finished products can lead to significant financial losses for manufacturers and could increase the risk of neonatal infection. Biochemical identification of suspect isolates using commercially available test panels is recommended for use by PIF manufacturers by both the US FDA and ISO standard methods for Cronobacter species; however, phenotyping can be unreliable, particularly for a genus such as Cronobacter where the taxonomy has been subject to frequent changes. This study compared the predicted identification by commonly used phenotyping kits (API20E and ID32E) for over 240 strains of Cronobacter from diverse sources, which had been identified using DNA sequence analysis. In 2015, the databases associated with the API20E and ID32E biochemical test panels were updated, including the recognition of the Cronobacter genus. Thus, the identifications from multiple versions the databases were compared to each other and to identifications based on DNA sequencing methods. Using previous versions of the API20E database, 90.0 % of strains (216/240) resulted in a match for the species identification; however, version 5.0 produced matches for only 82.3 % of strains (237/288). Similarly, the update to version 4.0 in the ID32E database caused the percentage of matches to drop from 88.9 % (240/270) to 43.2 % (139/322). A smaller study showed that the Vitek GN system identified all 14 strains, belonging all seven Cronobacter species, as members of the 'C. sakazakii group,' but also attributed three strains of Franconibacter helveticus and F. pulveris to this group. In silco analysis of a PCR-based method targeting ompA predicted that amplification would only occur with Cronobacter species and this method may be a feasible alternative to biochemical phenotyping. These results indicate that commercially available biochemical test panels are not sufficiently reliable for speciation of Cronobacter isolates. Although DNA-sequence based methods would be the more reliable approach; however, this is not currently feasible for many food microbiology laboratories. Instead, a previously published PCR-based method targeting ompA is suggested as an alternative for identification of Cronobacter species based on in silico analysis.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 6%
Unknown 17 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 17%
Student > Bachelor 3 17%
Student > Master 2 11%
Professor 2 11%
Other 1 6%
Other 2 11%
Unknown 5 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 22%
Biochemistry, Genetics and Molecular Biology 3 17%
Immunology and Microbiology 2 11%
Nursing and Health Professions 1 6%
Social Sciences 1 6%
Other 2 11%
Unknown 5 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2016.
All research outputs
#6,990,027
of 8,072,037 outputs
Outputs from BMC Microbiology
#1,098
of 1,353 outputs
Outputs of similar age
#217,826
of 258,665 outputs
Outputs of similar age from BMC Microbiology
#76
of 91 outputs
Altmetric has tracked 8,072,037 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,353 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 258,665 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 91 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.