↓ Skip to main content

Anatomical cross-sectional area of the quadriceps femoris and sit-to-stand test score in middle-aged and elderly population: development of a predictive equation

Overview of attention for article published in Journal of Physiological Anthropology, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anatomical cross-sectional area of the quadriceps femoris and sit-to-stand test score in middle-aged and elderly population: development of a predictive equation
Published in
Journal of Physiological Anthropology, June 2016
DOI 10.1186/s40101-016-0099-1
Pubmed ID
Authors

Akira Saito, Ryoichi Ema, Takayuki Inami, Sumiaki Maeo, Shun Otsuka, Mitsuru Higuchi, Shigenobu Shibata, Yasuo Kawakami

Abstract

Although the sit-to-stand (STS) test score has been shown to relate to the strength and size of the quadriceps femoris (QF) for elderly population, it is unknown whether this relationship is influenced by a posture (i.e., the trunk being allowed to stoop or not) during the STS test. The present study investigated the relationship between STS test score and QF anatomical cross-sectional area (ACSA) in the middle-aged and elderly population with regard to the difference in the posture during STS test, and aimed to develop an accurate predicting equation of the QF ACSA from the STS test score. 105 males (40-81 years) and 113 females (41-79 years) participated in the present study, then the subjects were divided at random as validation and cross-validation groups. Mid-thigh QF ACSA was determined by magnetic resonance imaging. Subjects performed a 10-repeated STS as fast as possible in two conditions: (1) with the trunk being allowed to stoop during the sitting phases, and (2) kept upright throughout the test. A power index of the STS test score was calculated based on an equation obtained in a previous study using the time taken for each test condition, the thigh and shank lengths, and body mass. In the validation group (n = 109), a stepwise multiple linear regression analysis was performed to create a predictive model of the ACSA with sex, age, the STS time, and power for both conditions as independent variables. The formulated predictive equation was examined in the cross-validation group (n = 109). In the validation group, a stepwise regression analysis revealed that STS power with upright trunk condition, sex, and age but not with the stooping condition, were selected as variables to predict QF ACSA (R (2) = 0.64, P < 0.001). There was no systematic error for the relationship between predicted and measured values in the cross-validation group. These results indicate that STS test score with upright trunk condition is one of the indices of QF muscle size of the middle-aged and elderly population. The estimated predicting equation should be useful in clinical and practical settings for the health promotion.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 16%
Researcher 7 12%
Student > Bachelor 5 9%
Student > Ph. D. Student 5 9%
Lecturer 3 5%
Other 6 11%
Unknown 22 39%
Readers by discipline Count As %
Nursing and Health Professions 10 18%
Medicine and Dentistry 8 14%
Sports and Recreations 6 11%
Psychology 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 5 9%
Unknown 25 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2017.
All research outputs
#19,945,185
of 25,374,917 outputs
Outputs from Journal of Physiological Anthropology
#327
of 451 outputs
Outputs of similar age
#268,085
of 367,294 outputs
Outputs of similar age from Journal of Physiological Anthropology
#5
of 5 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 451 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.4. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 367,294 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one.