↓ Skip to main content

Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice

Overview of attention for article published in Journal of Translational Medicine, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice
Published in
Journal of Translational Medicine, July 2016
DOI 10.1186/s12967-016-0972-z
Pubmed ID
Authors

Daniele M. Guizoni, Gabriel G. Dorighello, Helena C. F. Oliveira, Maria A. Delbin, Marta H. Krieger, Ana P. Davel

Abstract

Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr(-/-)), a genetic model of familial hypercholesterolemia. Twelve-week-old C57BL/6J (WT) and LDLr(-/-) mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined. Total cholesterol and triglycerides were increased in sedentary and exercised LDLr(-/-) mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr(-/-) mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr(-/-) mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr(-/-) mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr(-/-) mice. Furthermore, the aortas of sedentary LDLr(-/-) mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr(-/-) mice. The data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 11%
Student > Bachelor 5 9%
Student > Ph. D. Student 5 9%
Student > Master 5 9%
Professor > Associate Professor 3 6%
Other 6 11%
Unknown 24 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 9%
Sports and Recreations 4 7%
Medicine and Dentistry 4 7%
Agricultural and Biological Sciences 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 8 15%
Unknown 27 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2017.
All research outputs
#14,287,221
of 23,344,526 outputs
Outputs from Journal of Translational Medicine
#1,746
of 4,117 outputs
Outputs of similar age
#208,470
of 364,979 outputs
Outputs of similar age from Journal of Translational Medicine
#36
of 96 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,117 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,979 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 96 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.