↓ Skip to main content

MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma

Overview of attention for article published in BMC Cancer, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma
Published in
BMC Cancer, July 2016
DOI 10.1186/s12885-016-2525-5
Pubmed ID
Authors

Chartia Ching-Mei Cheung, Samantha Wei-Man Lun, Grace Tin-Yun Chung, Chit Chow, Carman Lo, Kwong-Wai Choy, Kwok-Wai Lo

Abstract

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy that exhibits distinct geographical and ethnic prevalence. Although the contemporary therapeutic approach of radio-/chemotherapy provides excellent results for patients with early-stage disease, it is far from satisfactory for those with disease remission and distant metastasis. Promising therapeutic strategies for advanced and relapsed NPC are still lacking. We recently identified and characterized a cancer stem-like cell (CSC) subpopulation in NPC that appeared to play an important role in tumor progression. Microarray analysis revealed downregulation of several stemness-inhibiting miRNAs in these CSC cells. Among these miRNAs, miR-96 and miR-183 showed the highest fold change and were selected to elucidate their role in repressing NPC CSC properties. MiR-96 and miR-183 expression in NPC CSCs was detected by qRT-PCR. Transient and stable transfection was performed in EBV-positive NPC C666-1 cells to examine the effects of ectopic expression of miR-96 and miR-183 on repressing cell growth and CSC properties. Anchorage-dependent (colony formation) and anchorage-independent (tumor sphere formation) growths of these miR-96 and miR-183 expressing cells were determined. Expression of multiple CSC markers and related molecules were accessed by flow cytometry and Western blotting. The tumorigenicity of the stable miR-96- and miR-183-transfected NPC cells was examined in an in vivo nude mice model. Downregulation of miR-96 and miR-183 was confirmed in NPC spheroids. Using transient or stable transfection, we showed that ectopic expression of miR-96 and miR-183 suppressed cell growth and tumor sphere formation in NPC. Reduced NICD3 and NICD4 in miR-96- and miR-183-expressing NPC cells suggests the involvement of the NOTCH signaling pathway in their tumor suppressive function. Finally, we showed that the tumorigenicity of cells stably expressing miR-183 was significantly inhibited in the in vivo nude mice model. miR-183 is a tumor-suppressive miRNA in EBV-associated NPC. Its abilities to suppress CSC properties in vitro and effectively reduce tumor growth in vivo shed light on its role as a potential therapeutic target.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 28%
Student > Bachelor 4 22%
Student > Doctoral Student 1 6%
Lecturer 1 6%
Professor 1 6%
Other 3 17%
Unknown 3 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 33%
Medicine and Dentistry 4 22%
Business, Management and Accounting 1 6%
Veterinary Science and Veterinary Medicine 1 6%
Agricultural and Biological Sciences 1 6%
Other 1 6%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2017.
All research outputs
#15,380,359
of 22,881,154 outputs
Outputs from BMC Cancer
#4,122
of 8,325 outputs
Outputs of similar age
#233,757
of 363,105 outputs
Outputs of similar age from BMC Cancer
#110
of 267 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,325 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,105 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.