↓ Skip to main content

The skin microbiome of Xenopus laevis and the effects of husbandry conditions

Overview of attention for article published in Animal Microbiome, February 2021
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

blogs
1 blog
twitter
10 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The skin microbiome of Xenopus laevis and the effects of husbandry conditions
Published in
Animal Microbiome, February 2021
DOI 10.1186/s42523-021-00080-w
Pubmed ID
Authors

Maya Z. Piccinni, Joy E. M. Watts, Marie Fourny, Matt Guille, Samuel C. Robson

Abstract

Historically the main source of laboratory Xenopus laevis was the environment. The increase in genetically altered animals and evolving governmental constraints around using wild-caught animals for research has led to the establishment of resource centres that supply animals and reagents worldwide, such as the European Xenopus Resource Centre. In the last decade, centres were encouraged to keep animals in a "low microbial load" or "clean" state, where embryos are surface sterilized before entering the housing system; instead of the conventional, "standard" conditions where frogs and embryos are kept without prior surface treatment. Despite Xenopus laevis having been kept in captivity for almost a century, surprisingly little is known about the frogs as a holobiont and how changing the microbiome may affect resistance to disease. This study examines how the different treatment conditions, "clean" and "standard" husbandry in recirculating housing, affects the skin microbiome of tadpoles and female adults. This is particularly important when considering the potential for poor welfare caused by a change in husbandry method as animals move from resource centres to smaller research colonies. We found strong evidence for developmental control of the surface microbiome on Xenopus laevis; adults had extremely similar microbial communities independent of their housing, while both tadpole and environmental microbiome communities were less resilient and showed greater diversity. Our findings suggest that the adult Xenopus laevis microbiome is controlled and selected by the host. This indicates that the surface microbiome of adult Xenopus laevis is stable and defined independently of the environment in which it is housed, suggesting that the use of clean husbandry conditions poses little risk to the skin microbiome when transferring adult frogs to research laboratories. This will have important implications for frog health applicable to Xenopus laevis research centres throughout the world.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Master 5 15%
Student > Bachelor 4 12%
Researcher 4 12%
Student > Doctoral Student 2 6%
Other 1 3%
Unknown 9 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Agricultural and Biological Sciences 7 21%
Environmental Science 2 6%
Veterinary Science and Veterinary Medicine 2 6%
Immunology and Microbiology 1 3%
Other 3 9%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2022.
All research outputs
#2,457,368
of 23,146,350 outputs
Outputs from Animal Microbiome
#54
of 229 outputs
Outputs of similar age
#71,151
of 504,267 outputs
Outputs of similar age from Animal Microbiome
#6
of 25 outputs
Altmetric has tracked 23,146,350 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 229 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.1. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 504,267 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.