↓ Skip to main content

“Noisy beets”: impact of phenotyping errors on genomic predictions for binary traits in Beta vulgaris

Overview of attention for article published in Plant Methods, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
“Noisy beets”: impact of phenotyping errors on genomic predictions for binary traits in Beta vulgaris
Published in
Plant Methods, July 2016
DOI 10.1186/s13007-016-0136-4
Pubmed ID
Authors

Filippo Biscarini, Nelson Nazzicari, Chiara Broccanello, Piergiorgio Stevanato, Simone Marini

Abstract

Noise (errors) in scientific data is endemic and may have a detrimental effect on statistical analyses and experimental results. The effects of noisy data have been assessed in genome-wide association studies for case-control experiments in human medicine. Little is known, however, on the impact of noisy data on genomic predictions, a widely used statistical application in plant and animal breeding. In this study, the sensitivity to noise in the data of five classification methods (K-nearest neighbours-KNN, random forest-RF, ridge logistic regression-LR, and support vector machines with linear or radial basis function kernels) was investigated. A sugar beet population of 123 plants phenotyped for a binary trait and genotyped for 192 SNP (single nucleotide polymorphism) markers was used. Labels (0/1 phenotype) were randomly sampled to generate noise. From the base scenario without errors in the labels, increasing proportions of noisy labels-up to 50 %-were generated and introduced in the data. Local classification methods-KNN and RF-showed higher tolerance to noisy labels compared to methods that leverage global data properties-LR and the two SVM models. In particular, KNN outperformed all other classifiers with AUC (area under the ROC curve) higher than 0.95 up to 20 % noisy labels. The runner-up method, RF, had an AUC of 0.941 with 20 % noise.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Researcher 5 16%
Student > Doctoral Student 2 6%
Professor > Associate Professor 2 6%
Other 1 3%
Other 4 13%
Unknown 10 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 39%
Environmental Science 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Unspecified 1 3%
Business, Management and Accounting 1 3%
Other 3 10%
Unknown 12 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 August 2016.
All research outputs
#12,668,425
of 22,881,154 outputs
Outputs from Plant Methods
#536
of 1,083 outputs
Outputs of similar age
#181,943
of 363,152 outputs
Outputs of similar age from Plant Methods
#5
of 8 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,083 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,152 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.