↓ Skip to main content

In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin

Overview of attention for article published in Malaria Journal, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin
Published in
Malaria Journal, July 2016
DOI 10.1186/s12936-016-1443-y
Pubmed ID
Authors

Muturi J. Njokah, Joseph N. Kang’ethe, Johnson Kinyua, Daniel Kariuki, Francis T. Kimani

Abstract

Anti-malarial drugs are the major focus in the prevention and treatment of malaria. Artemisinin-based combination therapy (ACT) is the WHO recommended first-line treatment for Plasmodium falciparum malaria across the endemic world. Also ACT is increasingly relied upon in treating Plasmodium vivax malaria where chloroquine is failing. The emergence of artemisinin drug-resistant parasites is a serious threat faced by global malaria control programmes. Therefore, the success of treatment and intervention strategies is highly pegged on understanding the genetic basis of resistance. Here, resistance in P. falciparum was generated in vitro for artemisinin to produce levels above clinically relevant concentrations in vivo, and the molecular haplotypes investigated. Genomic DNA was extracted using the QIAamp mini DNA kit. DNA sequences of Pfk13, Pfcrt and Pfmdr1 genes were amplified by PCR and the amplicons were successfully sequenced. Single nucleotide polymorphisms were traced by standard bidirectional sequencing and reading the transcripts against wild-type sequences in Codon code Aligner Version 5.1 and NCBI blast. Exposure of parasite strains D6 and W2 to artemisinin resulted in a decrease in parasite susceptibility to artemisinin (W2 and D6) and lumefantrine (D6 only). The parasites exhibited elevated IC50s to multiple artemisinins, with >twofold resistance to artemisinin; however, the resistance index obtained with standard methods was noticeably less than expected for parasite lines recovered from 50 µg/ml 48 h drug pressure. The change in parasite susceptibility was associated with Pfmdr-185K mutation, a mutation never reported before. The Pfcrt-CVMNK genotype (Pfcrt codons 72-76) was retained and notably, the study did not detect any polymorphisms reported to reduce P. falciparum susceptibility in vivo in the coding sequences of the Pfk13 gene. This data demonstrate that P. falciparum has the capacity to develop resistance to artemisinin derivatives in vitro and that this phenotype is achieved by mutations in Pfmdr1, the genetic changes that are also underpinning lumefantrine resistance. This finding is of practical importance, because artemisinin drugs in Kenya are used in combination with lumefantrine for the treatment of malaria. Artemisinin resistance phenotype as has been shown in this work, is a decrease in parasites susceptibility to artemisinin derivatives together with the parasite's ability to recover from drug-induced dormancy after exposure to drug dosage above the in vivo clinical concentrations. The study surmises that Pfmdr1 may play a role in the anti-malarial activity of artemisinin.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 16 24%
Student > Ph. D. Student 11 17%
Researcher 10 15%
Student > Doctoral Student 5 8%
Student > Bachelor 4 6%
Other 8 12%
Unknown 12 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 30%
Medicine and Dentistry 11 17%
Agricultural and Biological Sciences 9 14%
Immunology and Microbiology 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 6 9%
Unknown 14 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2016.
All research outputs
#18,466,238
of 22,881,154 outputs
Outputs from Malaria Journal
#5,055
of 5,579 outputs
Outputs of similar age
#280,286
of 364,027 outputs
Outputs of similar age from Malaria Journal
#119
of 139 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,579 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 4th percentile – i.e., 4% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 364,027 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 139 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.