↓ Skip to main content

Computational studies of human class V alcohol dehydrogenase - the odd sibling

Overview of attention for article published in BMC Molecular and Cell Biology, July 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Computational studies of human class V alcohol dehydrogenase - the odd sibling
Published in
BMC Molecular and Cell Biology, July 2016
DOI 10.1186/s12858-016-0072-y
Pubmed ID
Authors

Linus J. Östberg, Bengt Persson, Jan-Olov Höög

Abstract

All known attempts to isolate and characterize mammalian class V alcohol dehydrogenase (class V ADH), a member of the large ADH protein family, at the protein level have failed. This indicates that the class V ADH protein is not stable in a non-cellular environment, which is in contrast to all other human ADH enzymes. In this report we present evidence, supported with results from computational analyses performed in combination with earlier in vitro studies, why this ADH behaves in an atypical way. Using a combination of structural calculations and sequence analyses, we were able to identify local structural differences between human class V ADH and other human ADHs, including an elongated β-strands and a labile α-helix at the subunit interface region of each chain that probably disturb it. Several amino acid residues are strictly conserved in class I-IV, but altered in class V ADH. This includes a for class V ADH unique and conserved Lys51, a position directly involved in the catalytic mechanism in other ADHs, and nine other class V ADH-specific residues. In this study we show that there are pronounced structural changes in class V ADH as compared to other ADH enzymes. Furthermore, there is an evolutionary pressure among the mammalian class V ADHs, which for most proteins indicate that they fulfill a physiological function. We assume that class V ADH is expressed, but unable to form active dimers in a non-cellular environment, and is an atypical mammalian ADH. This is compatible with previous experimental characterization and present structural modelling. It can be considered the odd sibling of the ADH protein family and so far seems to be a pseudoenzyme with another hitherto unknown physiological function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 38%
Student > Ph. D. Student 3 14%
Lecturer 2 10%
Student > Doctoral Student 1 5%
Professor 1 5%
Other 3 14%
Unknown 3 14%
Readers by discipline Count As %
Medicine and Dentistry 4 19%
Pharmacology, Toxicology and Pharmaceutical Science 3 14%
Biochemistry, Genetics and Molecular Biology 3 14%
Agricultural and Biological Sciences 2 10%
Engineering 2 10%
Other 4 19%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2017.
All research outputs
#8,186,806
of 25,374,647 outputs
Outputs from BMC Molecular and Cell Biology
#300
of 1,233 outputs
Outputs of similar age
#131,010
of 379,946 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#7
of 20 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 379,946 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.