↓ Skip to main content

Vitamin A deficiency modulates iron metabolism independent of hemojuvelin (Hfe2) and bone morphogenetic protein 6 (Bmp6) transcript levels

Overview of attention for article published in Genes & Nutrition, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vitamin A deficiency modulates iron metabolism independent of hemojuvelin (Hfe2) and bone morphogenetic protein 6 (Bmp6) transcript levels
Published in
Genes & Nutrition, March 2016
DOI 10.1186/s12263-016-0519-4
Pubmed ID
Authors

Juliana Frossard Ribeiro Mendes, Egle Machado de Almeida Siqueira, João Gabriel Marques de Brito e Silva, Sandra Fernandes Arruda

Abstract

Considering that vitamin A deficiency modulates hepcidin expression and consequently affects iron metabolism, we evaluated the effect of vitamin A deficiency in the expression of genes involved in the hemojuvelin (HJV)-bone morphogenetic protein 6 (BMP6)-small mothers against decapentaplegic protein (SMAD) signaling pathway. Male Wistar rats were treated: control AIN-93G diet (CT), vitamin A-deficient diet (VAD), iron-deficient diet (FeD), vitamin A- and iron-deficient diet (VAFeD), or 12 mg all-trans retinoic acid (atRA)/kg diet. Vitamin A deficiency (VAD) increased hepatic Bmp6 and Hfe2 mRNA levels and down-regulated hepatic Hamp, Smad7, Rarα, and intestinal Fpn1 mRNA levels compared with the control. The FeD rats showed lower hepatic Hamp, Bmp6, and Smad7 mRNA levels compared with those of the control, while in the VAFeD rats only Hamp and Smad7 mRNA levels were lower than those of the control. The VAFeD diet up-regulated intestinal Dmt1 mRNA levels in relation to those of the control. The replacement of retinyl ester by atRA did not restore hepatic Hamp mRNA levels; however, the hepatic Hfe2, Bmp6, and Smad7 mRNA levels were similar to the control. The atRA rats showed an increase of hepatic Rarα mRNA levels and a reduction of intestinal Dmt1 mRNA and Fpn1 levels compared with those of the control. The HJV-BMP6-SMAD signaling pathway that normally activates the expression of hepcidin in iron deficiency is impaired by vitamin A deficiency despite increased expression of liver Bmp6 and Hfe2 mRNA levels and decreased expression of Smad7 mRNA. This response may be associated to the systemic iron deficiency and spleen iron retention promoted by vitamin A deficiency.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Student > Doctoral Student 5 14%
Researcher 3 8%
Student > Master 3 8%
Unspecified 2 5%
Other 7 19%
Unknown 10 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 22%
Biochemistry, Genetics and Molecular Biology 6 16%
Medicine and Dentistry 6 16%
Unspecified 2 5%
Chemistry 2 5%
Other 3 8%
Unknown 10 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2016.
All research outputs
#15,380,722
of 22,881,964 outputs
Outputs from Genes & Nutrition
#239
of 388 outputs
Outputs of similar age
#194,969
of 326,765 outputs
Outputs of similar age from Genes & Nutrition
#5
of 9 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,765 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.